Article

Neurobiology of Pavlovian fear conditioning.

Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1109, USA.
Annual Review of Neuroscience (Impact Factor: 22.66). 02/2001; 24:897-931. DOI: 10.1146/annurev.neuro.24.1.897
Source: PubMed

ABSTRACT Learning the relationships between aversive events and the environmental stimuli that predict such events is essential to the survival of organisms throughout the animal kingdom. Pavlovian fear conditioning is an exemplar of this form of learning that is exhibited by both rats and humans. Recent years have seen an incredible surge in interest in the neurobiology of fear conditioning. Neural circuits underlying fear conditioning have been mapped, synaptic plasticity in these circuits has been identified, and biochemical and genetic manipulations are beginning to unravel the molecular machinery responsible for the storage of fear memories. These advances represent an important step in understanding the neural substrates of a rapidly acquired and adaptive form of associative learning and memory in mammals.

Download full-text

Full-text

Available from: Stephen Maren, Jun 29, 2015
0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lesion studies suggest that an alternative system can compensate for damage to the primary region employed when animals acquire a memory. However, it is unclear whether functional compensation occurs at the cellular ensemble level. Here, we inhibited the activities of a specific subset of neurons activated during initial learning by utilizing a transgenic mouse that expresses tetanus toxin (TeNT) under the control of the c-fos promoter. Notably, suppression interfered with relearning while sparing the ability to acquire and express fear memory for a distinct context. These results suggest that the activity of the initial ensemble is preferentially dedicated to the same learning and that it is not replaceable once it is allocated. Our results provide substantial insights into the machinery underlying how the brain allocates individual memories to discrete neuronal ensembles and how it ensures that repetitive learning strengthens memory by reactivating the same neuronal ensembles. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
    Cell Reports 04/2015; 11(3). DOI:10.1016/j.celrep.2015.03.042 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The basolateral amygdala (BLA) and prefrontal cortex (PFC) are partners in fear learning and extinction. Intercalated (ITC) cells are inhibitory neurons that surround the BLA. Lateral ITC (lITC) neurons provide feed-forward inhibition to BLA principal neurons, whereas medial ITC (mITC) neurons form an inhibitory interface between the BLA and central amygdala (CeA). Notably, infralimbic prefrontal (IL) input to mITC neurons is thought to play a key role in fear extinction. Here, using targeted optogenetic stimulation, we show that lITC neurons receive auditory input from cortical and thalamic regions. IL inputs innervate principal neurons in the BLA but not mITC neurons. These results suggest that (1) these neurons may play a more central role in fear learning as both lITCs and mITCs receive auditory input and that (2) mITC neurons cannot be driven directly by the IL, and their role in fear extinction is likely mediated via the BLA. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 03/2015; 10(9). DOI:10.1016/j.celrep.2015.02.008 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fear learning and regulation is as a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation), and briefly discuss other techniques (avoidance and reconsolidation) where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology.
    01/2015; 1:134-146. DOI:10.1016/j.ynstr.2014.11.004