Article

Mutations in the gene encoding immunoglobulin mu-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1.

Department of Neuropediatrics, Charité, Campus Virchow-Klinikum, Humboldt University, 13353 Berlin, Germany.
Nature Genetics (Impact Factor: 29.65). 10/2001; 29(1):75-7. DOI: 10.1038/ng703
Source: PubMed

ABSTRACT Classic spinal muscular atrophy (SMA) is caused by mutations in the telomeric copy of SMN1. Its product is involved in various cellular processes, including cytoplasmic assembly of spliceosomal small nuclear ribonucleoproteins, pre-mRNA processing and activation of transcription. Spinal muscular atrophy with respiratory distress (SMARD) is clinically and genetically distinct from SMA. Here we demonstrate that SMARD type 1 (SMARD1) results from mutations in the gene encoding immunoglobulin micro-binding protein 2 (IGHMBP2; on chromosome 11q13.2-q13.4). In six SMARD1 families, we detected three recessive missense mutations (exons 5, 11 and 12), two nonsense mutations (exons 2 and 5), one frameshift deletion (exon 5) and one splice donor-site mutation (intron 13). Mutations in mouse Ighmbp2 (ref. 14) have been shown to be responsible for spinal muscular atrophy in the neuromuscular degeneration (nmd) mouse, whose phenotype resembles the SMARD1 phenotype. Like the SMN1 product, IGHMBP2 colocalizes with the RNA-processing machinery in both the cytoplasm and the nucleus. Our results show that IGHMBP2 is the second gene found to be defective in spinal muscular atrophy, and indicate that IGHMBP2 and SMN share common functions important for motor neuron maintenance and integrity in mammals.

1 Follower
 · 
99 Views
  • Source
    Frontiers in Genetics 02/2015; 6:39. DOI:10.3389/fgene.2015.00039
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-m-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 muta-tions in CMT2 were mainly loss-of-function nonsense in the 5 0 region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.
    The American Journal of Human Genetics 11/2014; DOI:10.1016/j.ajhg.2014.10.002 · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To identify the cause of sensorimotor neuropathy in a cohort of patients with genetically unsolved neuropathies (57 families with a total of 74 members) in whom hitherto known disease genes had been excluded. We used autozygosity mapping or haplotype analysis to delineate potential disease loci in informative families. For mutation detection, we used either whole-exome sequencing or Sanger sequencing of positional candidates. Subsequently, a larger cohort was specifically screened for IGHMBP2 mutations. The pathogenicity of a splice-site mutation was verified in cultured patient skin fibroblasts on the messenger RNA level and by Western blot. We report on 5 patients with neuropathy from 3 families who carried truncating mutations in IGHMBP2. Contrary to the "classic" phenotype, they did not manifest with respiratory distress, but with progressive sensorimotor neuropathy. Only one patient required nocturnal mask ventilation, while 4 others maintained normal respiratory function by the age of 14, 18, 22, and 37 years. Three patients were still able to walk independently. All patients had a predominantly axonal sensorimotor neuropathy with subsequent muscle atrophy, but without obvious sensory symptoms. Two patients had signs of autonomic neuropathy. Mutations in IGHMBP2 should be considered in the molecular genetic workup of patients with hereditary sensorimotor neuropathies, even in the absence of respiratory symptoms. © 2015 American Academy of Neurology.
    Neurology 01/2015; 84(5). DOI:10.1212/WNL.0000000000001220 · 8.30 Impact Factor