Article

Effects of ketamine in normal and schizophrenic volunteers

University of Maryland, Baltimore, Baltimore, Maryland, United States
Neuropsychopharmacology (Impact Factor: 7.83). 10/2001; 25(4):455-67. DOI: 10.1016/S0893-133X(01)00243-3
Source: PubMed

ABSTRACT This study evaluates the effects of ketamine on healthy and schizophrenic volunteers (SVs) in an effort to define the detailed behavioral effects of the drug in a psychosis model. We compared the effects of ketamine on normal and SVs to establish the comparability of their responses and the extent to which normal subjects might be used experimentally as a model. Eighteen normal volunteers (NVs) and 17 SVs participated in ketamine interviews. Some (n = 7 NVs; n = 9 SVs) had four sessions with a 0.1-0.5 mg/kg of ketamine and a placebo; others (n = 11 NVs; n = 8 SVs) had two sessions with one dose of ketamine (0.3 mg/kg) and a placebo. Experienced research clinicians used the BPRS to assess any change in mental status over time and documented the specifics in a timely way. In both volunteer groups, ketamine induced a dose-related, short (<30 min) increase in psychotic symptoms. The scores of NVs increased on both the Brief Psychiatric Rating Scale (BPRS) psychosis subscale (p =.0001) and the BPRS withdrawal subscale (p =.0001), whereas SVs experienced an increase only in positive symptoms (p =.0001). Seventy percent of the patients reported an increase (i.e., exacerbation) of previously experienced positive symptoms. Normal and schizophrenic groups differed only on the BPRS withdrawal score. The magnitude of ketamine-induced changes in positive symptoms was similar, although the psychosis baseline differed, and the dose-response profiles over time were superimposable across the two populations. The similarity between ketamine-induced symptoms in SVs and their own positive symptoms suggests that ketamine provides a unique model of psychosis in human volunteers. The data suggest that the phencyclidine (PCP) model of schizophrenia maybe a more valid human psychosis/schizophrenia drug model than the amphetamine model, with a broader range of psychotic symptoms. This study indicates that NVs could be used for many informative experimental psychosis studies involving ketamine interviews.

0 Bookmarks
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This literature review begins with a rationale for the development of new therapeutic approaches for the treatment of depressive disorder. In the following sections the history of the finding of ketamine‘s antidepressant effect, its pharmacological properties and application routes are summarized. The following is an overview of the existing scientific evidence of ketamine’s efficacy in patients with unipolar and bipolar depression, suicidality and the adjuvant use in electroconvulsive therapy. Finally, the author discusses acute and chronic side effects, safety of repeated administration of ketamine and possibilities of extending the antidepressant effect. The last section summarizes recent findings on the mechanism of the antidepressant effect of ketamine on the molecular level and its effect on neuronal plasticity.
    Psychiatrie 01/2014; 18(4):193-205.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vivo measurement of neurotransmitters and modulators is now feasible with advanced proton magnetic resonance spectroscopy ((1)H MRS) techniques. This review provides a basic tutorial of MRS, describes the methods available to measure brain glutamate, glutamine, γ-aminobutyric acid, glutathione, N-acetylaspartylglutamate, glycine, and serine at magnetic field strengths of 3T or higher, and summarizes the neurochemical findings in schizophrenia. Overall, (1)H MRS holds great promise for producing biomarkers that can serve as treatment targets, prediction of disease onset, or illness exacerbation in schizophrenia and other brain diseases. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience & Biobehavioral Reviews 01/2015; DOI:10.1016/j.neubiorev.2015.01.007 · 10.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a severe psychiatric illness that is characterized by reduced cortical connectivity, for which the underlying biological and genetic causes are not well understood. Although the currently approved antipsychotic drug treatments, which primarily modulate dopaminergic function, are effective at reducing positive symptoms (i.e. delusions and hallucinations), they do little to improve the disabling cognitive and negative (i.e. anhedonia) symptoms of patients with schizophrenia. This review details the recent genetic and neurobiological findings that link N-methyl-d-aspartate receptor (NMDAR) hypofunction to the etiology of schizophrenia. It also highlights potential treatment strategies that augment NMDA receptor function to treat the synaptic deficits and cognitive impairments. Copyright © 2014. Published by Elsevier Ltd.
    Current Opinion in Pharmacology 12/2014; 20C:109-115. DOI:10.1016/j.coph.2014.12.004 · 4.23 Impact Factor

Preview

Download
0 Downloads
Available from