Idiopathic environmental intolerances (formerly multiple chemical sensitivity) psychiatric perspectives.

Department of Toxicology, II. Medical Department, Technische Universität München, Germany.
Journal of Internal Medicine (Impact Factor: 6.46). 11/2001; 250(4):309-21. DOI: 10.1046/j.1365-2796.2001.00870.x
Source: PubMed

ABSTRACT Idiopathic environmental intolerances (IEI)/multiple chemical sensitivity (MCS) is characterized by various somatic symptoms which cannot be explained organically, but are attributed to the influences of toxic environmental chemicals in low, usually harmless doses. In the absence of a widely accepted definition of IEI, contradictory aetiological hypotheses and therapeutic suggestions are discussed. Some authors doubt the existence of IEI/MCS as a disease entity of its own. The label IEI does not implicate neither a diagnosis of somatic disease nor that it is caused by an avoidable exposure. Many IEI patients suffer from psychiatric diseases. A majority of them can be diagnosed as somatoform disorders. Consequently, psychiatric therapies could be effective. This review describes the current knowledge about IEI/MCS, outlines a diagnostic algorithm and a psychotherapeutic concept for variants of IEI understood as a somatoform disorder.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the environmental sensitivity-related illnesses (SRIs), multiple chemical sensitivity (MCS), chronic fatigue syndrome (FCS), and fibromyalgia (FM), the search for genetic polymorphisms of phase I/II xenobiotic-metabolizing enzymes as suitable diagnostic biomarkers produced so far inconclusive results, due to patient heterogeneity, geographic/ethnic differences in genetic backgrounds, and different methodological approaches. Here, we compared the frequency of gene polymorphisms of selected cytochrome P450 (CYP) metabolizing enzymes and, for the first time, the frequency of the xenobiotic sensor Aryl hydrocarbon receptor (AHR) in the three cohorts of 156 diagnosed MCS, 94 suspected MCS, and 80 FM/FCS patients versus 113 healthy controls. We found significantly higher frequency of polymorphisms CYP2C9∗2, CYP2C9∗3, CYP2C19∗2, CYP2D6∗4 and CYP2D6∗41 in patients compared with controls. This confirms that these genetic variants represent a genetic risk factor for SRI. Moreover, the compound heterozygosity for CYP2C9∗2 and ∗3 variants was useful to discriminate between either MCS or FM/CFS versus SMCS, while the PM ∗41/∗41 genotype discriminated between MCS and either SMCS or FM/CFS. The compound heterozygosity for CYP2C9 ∗1/∗3 and CYP2D6 ∗1/∗4 differentiated MCS and SMCS cases from FM/CFS ones. Interestingly, despite the distribution of the AHR Arg554Lys variant did not result significantly different between SRI cases and controls, it resulted useful for the discrimination between MCS and SMCS cases when considered within haplotypes in combination with CYP2C19 ∗1/∗2 and CYP2D6 ∗1/∗4. Results allowed us to propose the genotyping for these specific CYP variants, together with the AHR Arg554Lys variant, as reliable, cost-effective genetic parameters to be included in the still undefined biomarkers' panel for laboratory diagnosis of the main types of environmental-borne SRI.
    Oxidative Medicine and Cellular Longevity 01/2013; 2013:831969.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inherited or acquired impairment of xenobiotics metabolism is a postulated mechanism underlying environment-associated pathologies such as multiple chemical sensitivity, fibromyalgia, chronic fatigue syndrome, dental amalgam disease, and others, also collectively named idiopathic environmental intolerances (IEI). In view of the poor current knowledge of their etiology and pathogenesis, and the absence of recognised genetic and metabolic markers of the diseases. They are often considered "medically unexplained syndromes",. These disabling conditions share the features of polysymptomatic multi-organ syndromes, considered by part of the medical community to be aberrant responses triggered by exposure to low-dose organic and inorganic chemicals and metals, in concentrations far below average reference levels admitted for environmental toxicants. A genetic predisposition to altered biotransformation of environmental chemicals, drugs, and metals, and of endogenous low-molecular weight metabolites, caused by polymorphisms of genes coding for xenobiotic metabolizing enzymes, their receptors and transcription factors appears to be involved in the susceptibility to these environment-associated pathologies, along with epigenetic factors. Free radical/antioxidant homeostasis may also be heavily implicated, indirectly by affecting the regulation of xenobiotic metabolizing enzymes, and directly by causing increased levels of oxidative products, implicated in the chronic damage of cells and tissues, which is in part correlated with clinical symptoms. More systematic studies of molecular epidemiology, toxico- and pharmaco-genomics, elucidating the mechanisms of regulation, expression, induction, and activity of antioxidant/detoxifying enzymes, and the possible role of inflammatory mediators, promise a better understanding of this pathologically increased sensitivity to low-level chemical stimuli, and a solid basis for effective individualized antioxidant- and/or chelator-based treatments.
    Indian journal of experimental biology 07/2010; 48(7):625-35. · 1.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Post-traumatic stress disorder (PTSD) is associated with both (1) 'ill-defined' or 'medically unexplained' somatic syndromes, e.g. unexplained dizziness, tinnitus and blurry vision, and syndromes that can be classified as somatoform disorders (DSM-IV-TR); and (2) a range of medical conditions, with a preponderance of cardiovascular, respiratory, musculoskeletal, neurological, and gastrointestinal disorders, diabetes, chronic pain, sleep disorders and other immune-mediated disorders in various studies. Frequently reported medical co-morbidities with PTSD across various studies include cardiovascular disease, especially hypertension, and immune-mediated disorders. PTSD is associated with limbic instability and alterations in both the hypothalamic- pituitary-adrenal and sympatho-adrenal medullary axes, which affect neuroendocrine and immune functions, have central nervous system effects resulting in pseudo-neurological symptoms and disorders of sleep-wake regulation, and result in autonomic nervous system dysregulation. Hypervigilance, a central feature of PTSD, can lead to 'local sleep' or regional arousal states, when the patient is partially asleep and partially awake, and manifests as complex motor and/or verbal behaviours in a partially conscious state. The few studies of the effects of standard PTSD treatments (medications, CBT) on PTSD-associated somatic syndromes report a reduction in the severity of ill-defined and autonomically mediated somatic symptoms, self-reported physical health problems, and some chronic pain syndromes.
    International Review of Psychiatry 02/2013; 25(1):86-99. · 1.80 Impact Factor