A cannabinoid mechanism in relapse to cocaine seeking.

Research Institute Neurosciences Vrije Universiteit, Department of Medical Pharmacology, VU Medical Center, Amsterdam, The Netherlands.
Nature Medicine (Impact Factor: 28.05). 11/2001; 7(10):1151-4. DOI: 10.1038/nm1001-1151
Source: PubMed

ABSTRACT Treatment of cocaine addiction is hampered by high rates of relapse even after prolonged drug abstinence. This relapse to compulsive cocaine use can be triggered by re-exposure to cocaine, by re-exposure to stimuli previously associated with cocaine or by exposure to stress. In laboratory rats, similar events reinstate cocaine seeking after prolonged withdrawal periods, thus providing a model to study neuronal mechanisms underlying the relapse to cocaine. The endocannabinoid system has been implicated in a number of neuropsychiatric conditions, including drug addiction. The active ingredient of marijuana, Delta9-tetrahydrocannabinol, activates the mesolimbic dopamine (DA) reward system and has rewarding effects in preclinical models of drug abuse. We report here that the synthetic cannabinoid agonist, HU210 (ref. 13), provokes relapse to cocaine seeking after prolonged withdrawal periods. Furthermore, the selective CB1 receptor antagonist, SR141716A (ref. 14), attenuates relapse induced by re-exposure to cocaine-associated cues or cocaine itself, but not relapse induced by exposure to stress. These data reveal an important role of the cannabinoid system in the neuronal processes underlying relapse to cocaine seeking, and provide a rationale for the use of cannabinoid receptor antagonists for the prevention of relapse to cocaine use.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB1 receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning. Copyright © 2015 the authors 0270-6474/15/354469-13$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 03/2015; 35(10):4469-81. DOI:10.1523/JNEUROSCI.2924-14.2015 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several lines of evidence have shown that the endogenous cannabinoids are implicated in several neuropsychiatric diseases. Notably, preclinical and human clinical studies have shown a pivotal role of the cannabinoid system in nicotine addiction. The CB1 receptor inverse agonist/antagonist rimonabant (also known as SR141716) was effective to decrease nicotine-taking and nicotine-seeking in rodents, as well as the elevation of dopamine induced by nicotine in brain reward area. Rimonabant has been shown to improve the ability of smokers to quit smoking in randomized clinical trials. However, rimonabant was removed from the market due to increased risk of psychiatric side-effects observed in humans. Recently, other components of the endogenous cannabinoid system have been explored. Here, we present the recent advances on the understanding of the role of the different components of the cannabinoid system on nicotine's effects. Those recent findings suggest possible alternative ways of modulating the cannabinoid system that could have implication for nicotine dependence treatment.
    Frontiers in Psychiatry 01/2015; 6:41. DOI:10.3389/fpsyt.2015.00041
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Approach and avoidance behaviors-the primary responses to the environmental stimuli of danger, novelty and reward-are associated with the brain structures that mediate cognitive functionality, reward sensitivity and emotional expression. Individual differences in approach and avoidance behaviors are modulated by the functioning of amygdaloid-hypothalamic-striatal and striatal-cerebellar networks implicated in action and reaction to salient stimuli. The nodes of these networks are strongly interconnected and by acting on them the endocannabinoid and dopaminergic systems increase the intensity of appetitive or defensive motivation. This review analyzes the approach and avoidance behaviors in humans and rodents, addresses neurobiological and neurochemical aspects of these behaviors, and proposes a possible synaptic plasticity mechanism, related to endocannabinoid-dependent long-term potentiation (LTP) and depression that allows responding to salient positive and negative stimuli.
    Frontiers in Systems Neuroscience 12/2014; 8:238. DOI:10.3389/fnsys.2014.00238

Full-text (2 Sources)

Available from
Jun 3, 2014