Allergy development and the intestinal microflora during the first year of life

University of Tartu, Dorpat, Tartu, Estonia
Journal of Allergy and Clinical Immunology (Impact Factor: 11.25). 10/2001; 108(4):516-20. DOI: 10.1067/mai.2001.118130
Source: PubMed

ABSTRACT The intestinal microflora is a likely source for the induction of immune deviation in infancy.
The purpose of this study was to prospectively relate the intestinal microflora to allergy development in 2 countries differing with respect to the prevalence of atopic diseases.
Newborn infants were followed prospectively through the first 2 years of life in Estonia (n = 24) and Sweden (n = 20). By that age, 9 Estonian and 9 Swedish infants had developed atopic dermatitis and/or positive skin prick test results. Stool samples were obtained at 5 to 6 days and at 1, 3, 6, and 12 months, and 13 groups of aerobic and anaerobic microorganisms were cultivated through use of standard methods.
In comparison with healthy infants, babies who developed allergy were less often colonized with enterococci during the first month of life (72% vs 96%; P <.05) and with bifidobacteria during the first year of life (17% to 39% vs 42% to 69%; P <.05). Furthermore, allergic infants had higher counts of clostridia at 3 months (median value, 10.3 vs 7.2 log(10); P <.05). The prevalence of colonization with Staphylococcus aureus was also higher at 6 months (61% vs 23%; P <.05), whereas the counts of Bacteroides were lower at 12 months (9.9 vs 10.6 log(10); P <.05).
Differences in the composition of the gut flora between infants who will and infants who will not develop allergy are demonstrable before the development of any clinical manifestations of atopy. Because the observations were made in 2 countries with different standards of living, we believe that our findings could indicate a role for the intestinal microflora in the development of and protection from allergy.

Download full-text


Available from: Tiia Voor, Aug 18, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alterations in the gut microbiota composition are associated with food allergy. Toll-like receptors (TLR) respond to microbial stimuli. We studied the effects of ligation of TLR on intestinal epithelial cells (IEC) in preventing an allergic effector response. IEC monolayers (T84 cells) were co-cultured with CD3/28-activated PBMC from healthy controls or atopic patients and simultaneously apically exposed to TLR2, TLR4 or TLR9 ligands. The barrier integrity of T84 cell monolayers was significantly reduced upon co-culture with PBMC of food allergic subjects compared to healthy subjects. Apical exposure of IEC to TLR9, ligand prevented PBMC-induced epithelial barrier disruption. Using PBMC from food allergic subjects, apical TLR9 activation on IEC increased the IFN-γ/IL-13 and IL-10/IL-13 ratio, while suppressing pro-inflammatory IL-6, IL-8 and TNF-α production in an IEC-dependent manner. Hence, activation of apical TLR9 on IEC, potentially by microbiota-derived signals, may play an important role in the prevention of allergic inflammation.
    Clinical Immunology 10/2014; DOI:10.1016/j.clim.2014.07.002 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There currently is no consensus on which immunological mechanisms can best explain the rise in atopic disease post industrialization. The hygiene hypothesis lays groundwork for our understanding of how altered microbial exposures can drive atopy; yet since its introduction increasing evidence suggests the exposure of our immune system to the intestinal microbiota plays a key role in development of atopic disease. As societal change shifts our microbial exposure, concordant shifts in the tolerant and effector functions of our immune systems give rise to more hypersensitive responses to external antigens. This is contrasted with the greater immune tolerant capabilities of individuals still living in regions with lifestyles more representative of our evolutionary history. Recent findings, buoyed by technological advances in the field, suggest a direct role for the intestinal microbiota-immune system interplay in the development of atopic disease mechanisms. Overall, harnessing current mechanistic studies for translational research into microbiota composition and function in relation to atopy have potential for the design of therapeutics that could moderate these diseases.
    Seminars in Immunology 10/2013; DOI:10.1016/j.smim.2013.09.003 · 6.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main goal in reversing the allergy epidemic is the development of effective prophylactic strategies. We investigated the prophylactic effect of neonatal mother-to-offspring mono-colonization with Bifidobacterium longum ssp. longum CCM 7952 on subsequent allergic sensitization. Adult male and female germ-free (GF) mice were mono-colonized with B. longum, mated and their offspring, as well as age-matched GF controls, were sensitized with the major birch pollen allergen Bet v 1. Furthermore, signaling pathways involved in the recognition of B. longum were investigated in vitro. Neonatal mono-colonization of GF mice with B. longum suppressed Bet v 1-specific IgE-dependent β-hexosaminidase release as well as levels of total IgE and allergen-specific IgG2a in serum compared to sensitized GF controls. Accordingly, Bet v 1-induced production of both Th1- and Th2-associated cytokines in spleen cell cultures was significantly reduced in these mice. The general suppression of Bet v 1-specific immune responses in B. longum colonized mice was associated with increased levels of regulatory cytokines IL-10 and TGF-β in serum. In vitro, B. longum induced low maturation status of bone marrow-derived dendritic cells and production of IL-10 in TLR2-, MyD88-, and MAPK-dependent manner. Our data demonstrate that neonatal mono-colonization with B. longum reduces allergic sensitization, likely by activation of regulatory responses via TLR2, MyD88, and MAPK signaling pathways. Thus, B. longum might be a promising candidate for perinatal intervention strategies against the onset of allergic diseases in humans.
    Vaccine 09/2013; 31(46). DOI:10.1016/j.vaccine.2013.09.014 · 3.49 Impact Factor