Article

A new fluorescent chemosensor for copper ions based on tripeptide glycyl-histidyl-lysine (GHK).

Center for Supramolecular Science and Department of Chemistry, University of Miami, PO Box 249118, Coral Gables, Florida 33124, USA.
Organic Letters (Impact Factor: 6.14). 11/2001; 3(21):3277-80. DOI: 10.1021/ol0101638
Source: PubMed

ABSTRACT [structure: see text]. A new fluorescent chemosensor for Cu2+ ions was synthesized by modifying the tripeptide glycyl-histidyl-lysine (GHK) with 9-carbonylanthracene via the standard Fmoc solid-phase peptide synthesis method. While significant fluorescence quenching was observed from the molecule upon binding with Cu2+, addition of Fe2+, Co2+, Ni2+, and Zn2+ to the peptide solution caused a minimum fluorescence emission spectral change, indicating a high specificity of this chemosensor for Cu2+ ions. Effects of pH were also investigated.

0 Bookmarks
 · 
117 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present novel Schiff base ligands julolidine-carbonohydrazone 1 and julolidine-thiocarbonohydrazone 2 for selective detection of Cu(2+) in aqueous medium. The planar julolidine-based ligands can sense Cu(2+) colorimetrically with characteristic absorbance in the near-infrared (NIR, 700-1000 nm) region. Employing molecular probes 1 and 2 for detection of Cu(2+) not only allowed detection by the naked eye, but also detection of varying micromolar concentrations of Cu(2+) due to the appearance of distinct coloration. Moreover, Cu(2+) selectively quenches the fluorescence of julolidine-thiocarbonohydrazone 2 among all other metal ions, which increases the sensitivity of the probe. Furthermore, quenched fluorescence of the ligand 2 in the presence of Cu(2+) was restored by adjusting the complexation ability of the ligand. Hence, by treatment with ethylenediaminetetraacetic acid (EDTA), thus enabling reversibility and dual-check signaling, julolidine-thiocarbonohydrazone (2) can be used as a fluorescent molecular probe for the sensitive detection of Cu(2+) in biological systems. The ligands 1 and 2 can be utilized to monitor Cu(2+) in aqueous solution over a wide pH range. We have investigated the structural, electronic, and optical properties of the ligands using ab initio density functional theory (DFT) combined with time-dependent density functional theory (TDDFT) calculations. The observed absorption band in the NIR region is attributed to the formation of a charge-transfer complex between Cu(2+) and the ligand. The fluorescence-quenching behavior can be accounted for primarily due to the excited-state ligand 2 to metal (Cu(2+)) charge-transfer (LMCT) processes. Thus, experimentally observed characteristic NIR and fluorescence optical responses of the ligands upon binding to Cu(2+) are well supported by the theoretical calculations. Subsequently, we have employed julolidine-thiocarbonohydrazone 2 for reversible fluorescence sensing of intracellular Cu(2+) in cultured HEK293T cells.
    Chemistry 09/2011; 17(40):11152-61. · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we report a "turn-on" fluorescent strategy for the direct detection of Cu(2+) in solutions using molecular beacons (MBs) and graphene oxide (GO). MBs are special single-stranded DNA and carry fluorescence sources. GO is a new nanomaterial having remarkable physical properties. In the sensing system, GO was used as an efficient fluorescence quencher upon the adsorption of MBs, which reduced the background signal and made the detection method highly sensitive. In the presence of Cu(2+), the MBs were cut into short pieces and released by the GO, leading to fluorescence restoration. The detection limit of the sensing strategy was ∼50nM, which is sufficiently sensitive for practical applications. The sensing method also exhibited high selectivity in testing samples containing other metal ions. The application of the method for drinking water is demonstrated.
    Biosensors & Bioelectronics 01/2013; 43C:379-383. · 6.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stable coinage metal nanoparticles (NPs) have been synthesized individually in an aqueous alkaline solution from the corresponding metal salts as precursors using the condensation product (CP) of salicylaldehyde and triethylenetetramine as a reagent. Silver and gold NPs are obtained with and without light illumination but UV irradiation is essential for Cu(0)NP formation. During nanoparticle formation the CP is oxidized to OCP which eventually becomes a fluorophore and also a stabilizer for the in situ produced NPs. It has been observed that silver and gold particle formation kinetics is accelerated by UV exposure. Thus the ease of evolution of coinage metal NP formation relates to their nobility. The as prepared OCP solutions containing coinage metals exhibit a fluorescence contrast behaviour (fluorescence enhancement by Cu and Ag; quenching by AuNP) due to the match and mismatch of wave vectors. The electric field evident from the FDTD simulation abreast of the scattering cross section of the NPs governed from Mie theory as a consequence of surface plasmon coupled emission (SPCE), near field electromagnetic intensity enhancement and lightening rod effect concentrating the electric field around the fluorophore are responsible for the Cu and AgNPs stimulated fluorescence. Again, lossy surface waves are anticipated for efficient quenching by the AuNPs. The most unprecedented observation is 'Turn On' fluorescence which is reported here as a result of the substitution of Au(0) or Cu(0) by Ag(0). Finally, the preferential fluorescence enhancement helps the selective detection of Ag(i) and Cu(ii) well below the US Environmental Protection Agency (EPA) permissible level by tuning the experimental conditions.
    Dalton Transactions 10/2013; · 3.81 Impact Factor