Article

Molecular cloning and expression of woodchuck granulocyte-macrophage colony stimulating factor

Hepatitis Research Center, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan.
Journal of Medical Virology (Impact Factor: 2.22). 01/2001; 65(3):567-75. DOI: 10.1002/jmv.2074
Source: PubMed

ABSTRACT Granulocyte-macrophage colony stimulating factor (GM-CSF) has immunoregulatory and antiviral effects, and may thus be promising for the treatment of chronic hepatitis B. Using woodchuck hepatitis virus (WHV)-infected woodchuck as an animal model to test the efficacy and safety of GM-CSF on the therapy of chronic hepatitis B, woodchuck GM-CSF will be required due to the apparent species-specific activity of GM-CSF. The cDNA of woodchuck GM-CSF was cloned using reverse transcription-polymerase chain reaction (RT-PCR) with primers deriving from highly conserved regions of GM-CSF genes from other species. The deduced amino acids, including the signal peptide, is 138 in length and its identities to human, murine, canine and bovine GM-CSFs are 63, 49, 63, and 63% respectively. The genomic DNA of woodchuck GM-CSF was also cloned by PCR. Its organization is highly homologous to that of human and murine GM-CSF genes, consisting of four exons and three introns. Cloned woodchuck GM-CSF was expressed transiently in 293T cells. The recombinant protein expressed was found to stimulate the growth and differentiation of woodchuck bone marrow cells, indicating the protein expressed by the cloned gene is functional. These results pave the way for future studies on the potential role of GM-CSF for the treatment of chronic hepatitis B by using this animal model.

0 Followers
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection with hepatitis B virus (HBV) may lead to subclinical, acute or chronic hepatitis. In the prevaccination era, HBV infections were endemic due to frequent mother to child transmission in large regions of the world. However, there are still estimated 240 million chronic HBV carriers today and ca. 620,000 patients die per year due to HBV-related liver diseases. Recommended treatment of chronic hepatitis B with interferon-α and/or nucleos(t)ide analogues does not lead to satisfactory results. Induction of HBV-specific T cells by therapeutic vaccination or immunomodulation may be an innovative strategy to overcome virus persistence. Vaccination with commercially available HBV vaccines in patients with or without therapeutic reduction of viral load did not result in effective immune control of HBV infection, suggesting that combination of antiviral treatment with new formulations of therapeutic vaccines is needed. The woodchuck (Marmota monax) and its HBV-like woodchuck hepatitis virus are a useful preclinical animal model for developing new therapeutic approaches in chronic hepadnaviral infections. Several innovative approaches combining antiviral treatments using nucleos(t)ide analogues, with prime-boost vaccination using DNA vaccines, new hepadnaviral antigens or recombinant adenoviral vectors were tested in the woodchuck model. In this review, we summarize these encouraging results obtained with these therapeutic vaccines. In addition, we present potential innovations in immunostimulatory strategies by blocking the interaction of the inhibitory programmed death receptor 1 with its ligand in this animal model.
    Medical Microbiology and Immunology 12/2014; 204(1). DOI:10.1007/s00430-014-0379-5 · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytokine and antiangiogenic gene therapies have proved effective in implanted hepatocellular carcinoma (HCC) models in which small tumor burdens were established in small rodents. These models, however, may not reflect human HCCs, which are frequently detected at a stage when tumors are large and multifocal. In addition, HCC in patients is often associated with viral hepatitis. To investigate the effectiveness of a mixture type of gene therapy strategy on large tumor burdens, we used the woodchuck model in which woodchuck hepatitis virus-induced HCCs are large and multifocal, simulating the conditions in humans. Adenoviruses encoding antiangiogenic factors (pigment epithelium-derived factor and endostatin) or cytokines (GM-CSF and IL-12) were delivered via the hepatic artery separately or in combination into woodchuck livers bearing HCCs. Our results showed that the mixture type of strategy, which contained two cytokines and two antiangiogenic factors, had better antitumor effects on large tumors as compared with monotherapy either with antiangiogenic or cytokine genes. The immunotherapy recruited significant levels of CD3(+) T cells that infiltrated the tumors, whereas the antiangiogenesis-based therapy significantly reduced tumor vasculature. The mixture type of gene therapy achieved both effects. In addition, it induced high levels of natural killer cells and apoptotic cells and reduced the levels of immunosuppressive effectors in the tumor regions. Hence, antiangiogenic therapy may provide the advantage of reducing immune tolerance in large tumors, making them more vulnerable to the immune reactions. Our study implies that in the future, the combination therapy may prove effective for the treatment of patients with advanced HCC.
    Proceedings of the National Academy of Sciences 08/2010; 107(33):14769-74. DOI:10.1073/pnas.1009534107 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We aimed to evaluate the transcriptional characteristics of viral infection-induced woodchuck hepatocellular carcinoma (HCC), to compare the use of human, rat and mouse gene arrays for cross-species hybridization, and to look into gene expression profiles in woodchuck HCC by the combined use of these arrays. Commercially available human, rat and mouse oligonucleotide microarrays were used to determine the gene expression profiles on the same woodchuck liver samples. Differentially expressed genes between HCC and the surrounding hepatic tissues found in the arrays were selected for quantitative reverse transcription polymerase chain reaction. Despite the difference in the number of the probes from each array, the percentage of genes that were detectable was similar. Stringent microarray data analysis using both supervised and unsupervised methods identified 281 differentially expressed genes via the human array with a false discovery rate (FDR) of 0.99%, 107 genes via the rat array with an FDR of 1.85% and 78 genes via the mouse array with an FDR of 7.41%. Eleven genes were differentially changed in all three arrays that include the upregulation of NPM1, H2AFZ, EEF1G, HNRPAB, RPS18, EIF5, CKS2, ARIH1, RPS12 and RPS10, and the downregulation of EGR1. The quantitative reverse transcription polymerase chain reaction with woodchuck-specific primers confirmed the reliability of the microarray results. This study further demonstrated the utility of cross-species hybridization of microarrays on woodchuck HCC. A combined use of three types of arrays identified more differential genes in HCC than individual arrays with the human array providing the richest information among the three arrays used.
    Journal of Gastroenterology and Hepatology 11/2008; 24(4):605-17. DOI:10.1111/j.1440-1746.2008.05581.x · 3.63 Impact Factor

Full-text (2 Sources)

Download
16 Downloads
Available from
Jul 3, 2014