Article

Structural basis for Ni(2+) transport and assembly of the urease active site by the metallochaperone UreE from Bacillus pasteurii.

Laboratory of Protein Biochemistry and Protein Engineering, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium.
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2002; 276(52):49365-70.
Source: PubMed

ABSTRACT Bacillus pasteurii UreE (BpUreE) is a putative chaperone assisting the insertion of Ni(2+) ions in the active site of urease. The x-ray structure of the protein has been determined for two crystal forms, at 1.7 and 1.85 A resolution, using SIRAS phases derived from a Hg(2+)-derivative. BpUreE is composed of distinct N- and C-terminal domains, connected by a short flexible linker. The structure reveals the topology of an elongated homodimer, formed by interaction of the two C-terminal domains through hydrophobic interactions. A single Zn(2+) ion bound to four conserved His-100 residues, one from each monomer, connects two dimers resulting in a tetrameric BpUreE known to be formed in concentrated solutions. The Zn(2+) ion can be replaced by Ni(2+) as shown by anomalous difference maps obtained on a crystal of BpUreE soaked in a solution containing NiCl(2). A large hydrophobic patch surrounding the metal ion site is surface-exposed in the biologically relevant dimer. The BpUreE structure represents the first for this class of proteins and suggests a possible role for UreE in the urease nickel-center assembly.

0 Bookmarks
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Urease, the most efficient enzyme so far discovered, depends on the presence of nickel ions in the catalytic site for its activity. The transformation of inactive apo-urease into active holo-urease requires the insertion of two Ni(II) ions in the substrate binding site, a process that involves the interaction of four accessory proteins named UreD, UreF, UreG and UreE. This study, carried out using calorimetric and NMR-based structural analysis, is focused on the interaction between UreE and UreG from Sporosarcina pasteurii, a highly ureolytic bacterium. Isothermal calorimetric protein-protein titrations revealed the occurrence of a binding event between SpUreE and SpUreG, entailing two independent steps with positive cooperativity (Kd1=42±9μM; Kd2=1.7±0.3μM). This was interpreted as indicating the formation of the (UreE)2(UreG)2 hetero-oligomer upon binding of two UreG monomers onto the pre-formed UreE dimer. The molecular details of this interaction were elucidated using high-resolution NMR spectroscopy. The occurrence of SpUreE chemical shift perturbations upon addition of SpUreG was investigated and analyzed to establish the protein-protein interaction site. The latter appears to involve the Ni(II) binding site as well as mobile portions on the C-terminal and the N-terminal domains. Docking calculations based on the information obtained from NMR provided a structural basis for the protein-protein contact site. The high sequence and structural similarity within these protein classes suggests a generality of the interaction mode among homologous proteins. The implications of these results on the molecular details of the urease activation process are considered and analyzed.
    Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics 06/2014; · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Urease is a metalloenzyme essential for the survival of Helicobacter pylori in acidic gastric environment. Maturation of urease involves carbamylation of Lys219 and insertion of two nickel ions at its active site. This process requires GTP hydrolysis and the formation of a preactivation complex consisting of apo-urease and urease accessory proteins UreF, UreH, and UreG. UreF and UreH form a complex to recruit UreG, which is a SIMIBI class GTPase, to the preactivation complex. We report here the crystal structure of the UreG/UreF/UreH complex, which illustrates how UreF and UreH facilitate dimerization of UreG, and assembles its metal binding site by juxtaposing two invariant Cys66-Pro67-His68 metal binding motif at the interface to form the (UreG/UreF/UreH)2 complex. Interaction studies revealed that addition of nickel and GTP to the UreG/UreF/UreH complex releases a UreG dimer that binds a nickel ion at the dimeric interface. Substitution of Cys66 and His68 with alanine abolishes the formation of the nickel-charged UreG dimer. This nickel-charged UreG dimer can activate urease in vitro in the presence of the UreF/UreH complex. Static light scattering and atomic absorption spectroscopy measurements demonstrated that the nickel-charged UreG dimer, upon GTP hydrolysis, reverts to its monomeric form and releases nickel to urease. Based on our results, we propose a mechanism on how urease accessory proteins facilitate maturation of urease.
    PLoS Biology 10/2013; 11(10):e1001678. · 11.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Urease is a nickel-dependent enzyme that plays a critical role in the biogeochemical nitrogen cycle by catalyzing the hydrolysis of urea to ammonia and carbamate. This enzyme, initially synthesized in the apo form, needs to be activated by incorporation of two nickel ions into the active site, a process driven by the dimeric metallochaperone UreE. Previous studies reported that this protein can bind different metal ions in vitro, beside the cognate Ni(II). This study explores the metal selectivity and affinity of UreE from Sporosarcina pasteurii (Sp, formerly known as Bacillus pasteurii) for cognate [Ni(II)] and noncognate [Zn(II)] metal ions. In particular, the thermodynamic parameters of SpUreE Ni(II) and Zn(II) binding have been determined using isothermal titration calorimetry. These experiments show that two Ni(II) ions bind to the protein dimer with positive cooperativity. The high-affinity site involves the conserved solvent-exposed His(100) and the C-terminal His(145), whereas the low-affinity site comprises also the C-terminal His(147). Zn(II) binding to the protein, occurring in the same protein regions and with similar affinity as compared to Ni(II), causes metal-driven dimerization of the protein dimer. The crystal structure of the protein obtained in the presence of equimolar amounts of both metal ions indicates that the high-affinity metal binding site binds Ni(II) preferentially over Zn(II). The ability of the protein to select Ni(II) over Zn(II) was confirmed by competition experiments in solution as well as by analysis of X-ray anomalous dispersion data. Overall, the thermodynamics and structural parameters that modulate the metal ion specificity of the different binding sites on the protein surface of SpUreE have been established.
    European Journal of Biochemistry 10/2013; · 3.16 Impact Factor