Convergence of Multiple Autophagy and Cytoplasm to Vacuole Targeting Components to a Perivacuolar Membrane Compartment Prior tode Novo Vesicle Formation

Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 02/2002; 277(1):763-73. DOI: 10.1074/jbc.M109134200
Source: PubMed

ABSTRACT Under starvation conditions, the majority of intracellular degradation occurs at the lysosome or vacuole by the autophagy pathway. The cytoplasmic substrates destined for degradation are packaged inside unique double-membrane transport vesicles called autophagosomes and are targeted to the lysosome/vacuole for subsequent breakdown and recycling. Genetic analyses of yeast autophagy mutants, apg and aut, have begun to identify the molecular machinery as well as indicate a substantial overlap with the biosynthetic cytoplasm to vacuole targeting (Cvt) pathway. Transport vesicle formation is a key regulatory step of both pathways. In this study, we characterize the putative compartment from which both autophagosomes and the analogous Cvt vesicles may originate. Microscopy analyses identified a perivacuolar membrane as the resident compartment for both the Apg1-Cvt9 signaling complex, which mediates the switching between autophagic and Cvt transport, and the autophagy/Cvt-specific phosphatidylinositol 3-kinase complex. Furthermore, the perivacuolar compartment designates the initial site of membrane binding by the Apg/Cvt vesicle component Aut7, the Cvt cargo receptor Cvt19, and the Apg conjugation machinery, which functions in the de novo formation of vesicles. Biochemical isolation of the vesicle component Aut7 and density gradient analyses recapitulate the microscopy findings although also supporting the paradigm that components required for vesicle formation and packaging concentrate at subdomains within the donor membrane compartment.

Download full-text


Available from: Per E Strømhaug, Jun 29, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a conserved degradative transport pathway. It is characterized by the formation of double-membrane autophagosomes at the phagophore assembly site (PAS). Atg18 is essential for autophagy but also for vacuole homeostasis and probably endosomal functions. This protein is basically a β-propeller formed by 7 WD40 repeats, which contains a conserved FRRG motif that binds phosphoinositides and promotes Atg18 recruitment to the PAS, endosomes and vacuoles. It is unknown, however, how Atg18 association with these organelles is regulated as the phosphoinositides bound by this protein are present on the surface of all of them. We have investigated Atg18 recruitment to the PAS and found that Atg18 binds Atg2 through a specific stretch of amino acids in the β-propeller on the opposite surface from the FRRG motif. As in absence of the FRRG sequence, the inability of Atg18 to interact with Atg2 impairs its association with the PAS, causing an autophagy block. Our data provide a model, where the Atg18 β-propeller provides organelle specificity by binding two determinants on the target membrane.
    Journal of Cell Science 12/2012; 126(2). DOI:10.1242/jcs.115725 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is an intracellular degradation process by which cytoplasmic contents are degraded in the lysosome. In addition to nonselective engulfment of cytoplasmic materials, the autophagosomal membrane can selectively recognize specific proteins and organelles. It is generally believed that the major selective substrate (or cargo receptor) p62 is recruited to the autophagosomal membrane through interaction with LC3. In this study, we analyzed loading of p62 and its related protein NBR1 and found that they localize to the endoplasmic reticulum (ER)-associated autophagosome formation site independently of LC3 localization to membranes. p62 colocalizes with upstream autophagy factors such as ULK1 and VMP1 even when autophagosome formation is blocked by wortmannin or FIP200 knockout. Self-oligomerization of p62 is essential for its localization to the autophagosome formation site. These results suggest that p62 localizes to the autophagosome formation site on the ER, where autophagosomes are nucleated. This process is similar to the yeast cytoplasm to vacuole targeting pathway.
    The Journal of Cell Biology 01/2011; 192(1):17-27. DOI:10.1083/jcb.201009067 · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The delivery of proteins and organelles to the vacuole by autophagy involves membrane rearrangements that result in the formation of large vesicles called autophagosomes. The mechanism underlying autophagosome biogenesis and the origin of the membranes composing these vesicles remains largely unclear. We have investigated the role of the Golgi complex in autophagy and have determined that in yeast, activation of ADP-ribosylation factor (Arf)1 and Arf2 GTPases by Sec7, Gea1, and Gea2 is essential for this catabolic process. The two main events catalyzed by these components, the biogenesis of COPI- and clathrin-coated vesicles, do not play a critical role in autophagy. Analysis of the sec7 strain under starvation conditions revealed that the autophagy machinery is correctly assembled and the precursor membrane cisterna of autophagosomes, the phagophore, is normally formed. However, the expansion of the phagophore into an autophagosome is severely impaired. Our data show that the Golgi complex plays a crucial role in supplying the lipid bilayers necessary for the biogenesis of double-membrane vesicles possibly through a new class of transport carriers or a new mechanism.
    Molecular biology of the cell 05/2010; 21(13):2270-84. DOI:10.1091/mbc.E09-04-0345 · 5.98 Impact Factor