A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31

Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607-7170, USA.
Oncogene (Impact Factor: 8.56). 11/2001; 20(47):6946-54. DOI: 10.1038/sj.onc.1204850
Source: PubMed

ABSTRACT Interstitial deletion or loss of chromosome 5, del(5q) or -5, is a frequent finding in myeloid leukemias and myelodysplasias, suggesting the presence of a tumor suppressor gene within the deleted region. In our search for this gene, we identified a candidate, 5qNCA (LOC51780), which lies within a consistently-deleted segment of 5q31. 5qNCA expresses a 7.2-kb transcript with a 5286-bp open reading frame which is present at high levels in heart, skeletal muscle, kidney, placenta, and liver as well as CD34+ cells and AML cell lines. 5qNCA encodes a 191-kD nuclear protein which contains a highly-conserved C-terminus containing a zinc finger with the unique spacing Cys-X2-Cys-X7-His-X2-Cys-X2-Cys-X4-Cys-X2-Cys and a jmjC domain, which is often found in proteins that regulate chromatin remodeling. Expression of 5qNCA in a del(5q) cell line results in suppression of clonogenic growth. Preliminary sequence results in AML and MDS samples and cell lines has revealed a possible mutation in the KG-1 cell line resulting in a THR to ALA substitution that has not been found in over 100 normal alleles to date. We propose 5qNCA is a good candidate for the del(5q) tumor suppressor gene based on its predicted function and growth suppressive activities, and suggest that further mutational and functional study of this interesting gene is warranted.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The tumor suppressor p16(INK4A) inhibits formation of enzymatically active complexes of cyclin-dependent kinases 4 and 6 (CDK4/6) with D-type cyclins. Oncogenic stress induces p16(INK4A) expression, which in turn triggers cellular senescence through activation of the retinoblastoma tumor suppressor. Subversion of oncogene-induced senescence is a key step during cancer development, and many tumors have lost p16(INK4A) activity by mutation or epigenetic silencing. Human papillomavirus (HPV)-associated tumors express high levels of p16(INK4A) in response to E7 oncoprotein expression. Induction of p16(INK4A) expression is not a consequence of retinoblastoma tumor suppressor inactivation but is triggered by a cellular senescence response and is mediated by epigenetic derepression through the H3K27-specific demethylase (KDM)6B. HPV E7 expression causes an acute dependence on KDM6B expression for cell survival. The p16(INK4A) tumor suppressor is a critical KDM6B downstream transcriptional target and its expression is critical for cell survival. This oncogenic p16(INK4A) activity depends on inhibition of CDK4/CDK6, suggesting that in cervical cancer cells where retinoblastoma tumor suppressor is inactivated, CDK4/CDK6 activity needs to be inhibited in order for cells to survive. Finally, we note that HPV E7 expression creates a unique cellular vulnerability to small-molecule KDM6A/B inhibitors.
    Proceedings of the National Academy of Sciences 09/2013; DOI:10.1073/pnas.1310432110 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key events in the development of glioma, acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma (ICC), and angioimmunoblastic T-cell lymphoma. They also cause D-2-hydroxyglutaric aciduria and Ollier and Maffucci syndromes. IDH1/2 mutations are associated with prolonged survival in glioma and in ICC, but not in AML. The reason for this is unknown. In their wild-type forms, IDH1 and IDH2 convert isocitrate and NADP(+) to α-ketoglutarate (αKG) and NADPH. Missense mutations in the active sites of these enzymes induce a neo-enzymatic reaction wherein NADPH reduces αKG to D-2-hydroxyglutarate (D-2HG). The resulting D-2HG accumulation leads to hypoxia-inducible factor 1α degradation, changes in epigenetics and extracellular matrix homeostasis. Such mutations also imply less NADPH production capacity. Each of these effects could play a role in cancer formation. Here, we provide an overview of the literature and discuss which downstream molecular effects are likely to be the drivers of the oncogenic and survival-prolonging properties of IDH1/2 mutations. We discuss interactions between mutant IDH1/2 inhibitors and conventional therapies. Understanding of the biochemical consequences of IDH1/2 mutations in oncogenesis and survival prolongation will yield valuable information for rational therapy design: it will tell us which oncogenic processes should be blocked and which "survivalogenic" effects should be retained.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 05/2014; DOI:10.1016/j.bbcan.2014.05.004 · 7.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The iron- and 2-oxoglutarate-dependent oxygenases constitute a phylogenetically conserved class of enzymes that catalyze hydroxylation reactions in humans by acting on various types of substrates, including metabolic intermediates, amino acid residues in different proteins and various types of nucleic acids. The discovery of jumonji (Jmj), the founding member of a class of Jmj-type chromatin modifying enzymes and transcriptional regulators, has culminated in the discovery of several branches of histone lysine demethylases, with essential functions in regulating the epigenetic landscape of the chromatin environment. This work has now been considerably expanded into other aspects of epigenetic biology and includes the discovery of enzymatic steps required for methyl-cytosine demethylation as well as modification of RNA and ribosomal proteins. This overview aims to summarize the current knowledge on the human Jmj-type enzymes and their involvement in human pathological processes, including development, cancer, inflammation and metabolic diseases.
    Epigenomics 02/2014; 6(1):89-120. DOI:10.2217/epi.13.79 · 5.22 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014