Article

S(+)-ketamine/propofol maintain dynamic cerebrovascular autoregulation in humans.

Klinik für Anaesthesiologie der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany.
Canadian Journal of Anaesthesia (Impact Factor: 2.5). 11/2001; 48(10):1034-9. DOI: 10.1007/BF03016597
Source: PubMed

ABSTRACT This study investigates the effects of S(+)-ketamine and propofol in comparison to sevoflurane on dynamic cerebrovascular autoregulation in humans.
Twenty-four patients were randomly assigned to one of the following anesthetic protocols: group I (n=12): 2.5 mg.kg(-1)*hr(-1) S(+)-ketamine, 1.5-2.5 microg*mL(-1) propofol-target plasma concentration; group II (n=12): 2.0 MAC (4.0 %) sevoflurane. Patients were intubated and ventilated with O(2)/air (PaO(2)=0.33). Following 40 min of equilibration dynamic cerebrovascular autoregulation was measured and expressed as the autoregulatory index (ARI), describing the duration of cerebral hemodynamic recovery in relation to changes in mean arterial blood pressure. Statistics: Mann-Whitney U test (statistical significance was assumed when P <0.05).
Dynamic cerebrovascular autoregulation was intact in all patients with S(+)-ketamine/propofol anesthesia as indicated by an ARI of 5.4 +/- 1.1. In contrast, dynamic cerebrovascular autoregulation was significantly delayed with 2.0 MAC sevoflurane (ARI=2.6 +/- 0.7)
Dynamic cerebrovascular autoregulation is maintained with S(+)-ketamine/propofol-based total iv anesthesia. In contrast, 2.0 MAC sevoflurane delayed dynamic cerebrovascular autoregulation. This supports the use of S(+)-ketamine in combination with propofol in neurosurgical patients based on its neuroprotective potential along with maintained cerebrovascular physiology.

0 Followers
 · 
69 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: In chronic renal failure, intermittent hemodialysis decreases cerebral blood flow velocity (CBFV); however, in critically ill patients with acute renal failure, the effect of continuous venovenous hemodialysis (CVVHD) on CBFV and cerebrovascular autoregulation (AR) is unknown. Therefore, a study was undertaken to investigate the potential effect of CVVHD on CBFV and AR in patients with acute renal failure. METHODS: This cohort study investigated 20 patients with acute renal failure who required CVVHD. In these patients, the CBFV and index of AR (Mx) were measured using transcranial Doppler before and during CVVHD. RESULTS: The median Mx values at baseline were 0.33 [interquartile range (IQR): 0.02-0.55], and during CVVHD, they were 0.20 [0.07-0.40]. The differences in Mx (CVVHD - baseline) was (median [IQR]) -0.015 [-0.19-0.05], 95% confidence interval (CI) -0.16 to 0.05. The Mx was > 0.3 in 11/20 patients at baseline measurement. Six of these patients recovered to Mx < 0.3 during CVVHD. The CBFV was (median [IQR]) 47 [36-59] cm·sec(-1) at baseline and 49 [36-66] cm·sec(-1) during CVVHD. The difference of CBFV was 0.0 [-4 - 2.7], 95% CI -2.5 to 4.2. CONCLUSION: Compared with patients with intermittent hemodialysis, CVVHD did not influence CBFV and AR in critically ill patients with acute renal failure, possibly due to lower extracorporeal blood flow, slower change of plasma osmolarity, and a lower fluid extraction rate. In a subgroup of patients with sepsis, the AR was impaired at baseline in more than half of the patients, and this was reversed during CVVHD. The trial was registered at ClinicalTrials.gov ID: NCT01376531.
    Canadian Anaesthetists? Society Journal 03/2013; 60(6). DOI:10.1007/s12630-013-9912-z · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sedation has a graded effect on brain responses to auditory stimuli: perceptual processing persists at sedation levels that attenuate more complex processing. We used fMRI in healthy volunteers sedated with propofol to assess changes in neural responses to spoken stimuli. Volunteers were scanned awake, sedated, and during recovery, while making perceptual or semantic decisions about nonspeech sounds or spoken words respectively. Sedation caused increased error rates and response times, and differentially affected responses to words in the left inferior frontal gyrus (LIFG) and the left inferior temporal gyrus (LITG). Activity in LIFG regions putatively associated with semantic processing, was significantly reduced by sedation despite sedated volunteers continuing to make accurate semantic decisions. Instead, LITG activity was preserved for words greater than nonspeech sounds and may therefore be associated with persistent semantic processing during the deepest levels of sedation. These results suggest functionally distinct contributions of frontal and temporal regions to semantic decision making. These results have implications for functional imaging studies of language, for understanding mechanisms of impaired speech comprehension in postoperative patients with residual levels of anesthetic, and may contribute to the development of frameworks against which EEG based monitors could be calibrated to detect awareness under anesthesia. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
    Human Brain Mapping 07/2014; 35(7). DOI:10.1002/hbm.22375 · 6.92 Impact Factor

Preview

Download
0 Downloads
Available from