The sleep switch: hypothalamic control of sleep and wakefulness.

Dept of Neurology, Program in Neuroscience, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
Trends in Neurosciences (Impact Factor: 12.9). 01/2002; 24(12):726-31. DOI: 10.1016/S0166-2236(00)02002-6
Source: PubMed

ABSTRACT More than 70 years ago, von Economo predicted a wake-promoting area in the posterior hypothalamus and a sleep-promoting region in the preoptic area. Recent studies have dramatically confirmed these predictions. The ventrolateral preoptic nucleus contains GABAergic and galaninergic neurons that are active during sleep and are necessary for normal sleep. The posterior lateral hypothalamus contains orexin/hypocretin neurons that are crucial for maintaining normal wakefulness. A model is proposed in which wake- and sleep-promoting neurons inhibit each other, which results in stable wakefulness and sleep. Disruption of wake- or sleep-promoting pathways results in behavioral state instability.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adult mammalian brains continuously generate new neurons, a phenomenon called neurogenesis. Both environmental stimuli and endogenous factors are important regulators of neurogenesis. Sleep has an important role in normal brain physiology and its disturbance causes very stressful conditions, which disrupt normal brain physiology. Recently, an influence of sleep in adult neurogenesis has been established, mainly based on sleep deprivation studies. This review provides an overview on how rhythms and sleep cycles regulate hippocampal and subventricular zone neurogenesis, discussing some potential underlying mechanisms. In addition, our review highlights some interacting points between sleep and neurogenesis in brain function, such as learning, memory and mood states, and provides some insights on the effects of antidepressants and hypnotic drugs on neurogenesis.
    Frontiers in Cellular Neuroscience 03/2015; 9:140. DOI:10.3389/fncel.2015.00140 · 4.18 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a strong correlation between signature EEG frequency patterns and the relative levels of distinct neuromodulators. These associations become particularly evident during the sleep-wake cycle. The monoamine-acetylcholine balance hypothesis is a theory of neurophysiological markers of the EEG and a detailed description of the findings that support this proposal are presented in this paper. According to this model alpha rhythm reflects the relative predominance of cholinergic muscarinic signals and delta rhythm that of monoaminergic receptor effects. Both high voltage synchronized rhythms are likely mediated by inhibitory Gαi/o-mediated transduction of inhibitory interneurons. Cognitively, alpha and delta EEG measures are proposed to indicate automatic and flexible strategies, respectively. Sleep is associated with marked changes in relative neuromodulator levels corresponding to EEG markers of distinct stages. Sleep studies on memory consolidation present some of the strongest evidence yet for the respective roles of monoaminergic and cholinergic projections in declarative and non-declarative memory processes, a key theoretical premise for understanding the data. Affective dysregulation is reflected in altered EEG patterns during sleep.
    Frontiers in Neuroscience 04/2014; 8:63. DOI:10.3389/fnins.2014.00063