The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells.

Program in Cell Biology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
Cancer Research (Impact Factor: 9.28). 01/2002; 61(23):8492-7.
Source: PubMed

ABSTRACT Histone deacetylase (HDACs) regulate histone acetylation by catalyzing the removal of acetyl groups on the NH(2)-terminal lysine residues of the core nucleosomal histones. Modulation of the acetylation status of core histones is involved in the regulation of the transcriptional activity of certain genes. HDAC activity is generally associated with transcriptional repression. Aberrant recruitment of HDAC activity has been associated with the development of certain human cancers. We have developed a class of HDAC inhibitors, such as suberoylanilide hydroxamic acid (SAHA), that were initially identified based on their ability to induce differentiation of cultured murine erythroleukemia cells. Additional studies have demonstrated that SAHA inhibits the growth of tumors in rodents. In this study we have examined the effects of SAHA on MCF-7 human breast cancer cells. We found that SAHA causes the inhibition of proliferation, accumulation of cells in a dose-dependent manner in G(1) then G(2)-M phase of the cell cycle, and induction of milk fat globule protein, milk fat membrane globule protein, and lipid droplets. Growth inhibition was associated with morphological changes including the flattening and enlargement of the cytoplasm, and a decrease in the nuclear:cytoplasmic ratio. Withdrawal of SAHA led to reentry of cells into the cell cycle and reversal to a less differentiated phenotype. SAHA induced differentiation in the estrogen receptor-negative cell line SKBr-3 and the retinoblastoma-negative cell line MDA-468. We propose that SAHA has profound antiproliferative activity by causing these cells to undergo cell cycle arrest and differentiation that is dependent on the presence of SAHA. SAHA and other HDAC inhibitors are currently in Phase I clinical trials. These findings may impact the clinical use of these drugs.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cancer stem cell (CSC) hypothesis suggests that only a subpopulation of cells within a tumour is responsible for the initiation and progression of neoplasia. The original and best evidence for the existence of CSCs came from advances in the field of haematological malignancies. Thus far, putative CSCs have been isolated from various solid and non-solid tumours and shown to possess self-renewal, differentiation, and cancer regeneration properties. Although research in the field is progressing extremely fast, proof of concept for the CSC hypothesis is still lacking and key questions remain unanswered, e.g. the cell of origin for these cells. Nevertheless, it is undisputed that neoplastic transformation is associated with genetic and epigenetic alterations of normal cells, and a better understanding of these complex processes is of utmost importance for developing new anti-cancer therapies. In the present review, we discuss the CSC hypothesis with special emphasis on age-associated alterations that govern carcinogenesis, at least in some types of tumours. We present evidence from the scientific literature for age-related genetic and epigenetic alterations leading to cancer and discuss the main challenges in the field.
    BMC Cancer 01/2015; 15 Suppl 1:S1. DOI:10.1186/1471-2407-15-S1-S1 · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level.
    Scientific Reports 03/2015; 5:9520. DOI:10.1038/srep09520 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast carcinoma is currently considered as a group of diseases, differing not only in histopathologic phenotype, as indicated by histologic type and grade, but also in their protein, genetic and epigenetic molecular profile. The standard of care indicates that the core information for patient management includes data on Estrogen Receptor (ER), Progesterone Receptor (PgR) and Human Epidermal Growth Factor Receptor 2 (HER2), while there is an emerging role for the proliferation marker Ki67. These indices can be provided even in low resource settings and are indispensable for prognostication and therapeutic patient management. With the progress in molecular and translational research, there is a growing body of information on the molecular subtypes of breast carcinoma and their significance, and multigene signature assays are used to dictate prognosis and guide therapeutics in high resource settings. In addition, several cellular pathways involved in tumor growth and spread are dissected and targeted in clinical trials. Among these are the p53, RB, PI3K/Akt/mTOR and Ras/MAPK pathways, alterations associated with genetic instability and epigenetic alterations including histone methylation and acetylation, DNA methylation and microRNAs expression. The tumor immune microenvironment, including the tumor infiltrating lymphocytes (TILs) is attracting significant research interest. This review summarizes the mechanisms of function of the above factors in breast tumorigenesis with emphasis on their prognostic and predictive value and their use as therapeutic targets.
    Current molecular pharmacology 01/2015; 7(1):4-21. DOI:10.2174/187446720701150105170830

Full-text (2 Sources)

Available from
Jun 5, 2014