Investigation of vascular endothelial growth factor on pulmonary endothelial monolayer permeability and neutrophil migration

University College Dublin, Dublin, Leinster, Ireland
General Pharmacology 10/2000; 35(3):149-57. DOI: 10.1016/S0306-3623(01)00102-1
Source: PubMed


This study sought to determine whether vascular endothelial growth factor (VEGF)-induced permeabilisation of pulmonary endothelium to macromolecules could be related to a permissive role for neutrophil-derived VEGF in neutrophil transmigration. Treatment of human pulmonary artery endothelial cell (HPAEC) monolayers with 1, 10 or 100 ng/ml VEGF for 15 min or 1, 10 ng/ml for 90 min significantly increased endothelial permeability to trypan blue-labelled albumin (TB-BSA). These increases were correlated with changes in the cellular distribution of F-actin, as visualised by rhodamine-phalloidin staining: increased stress fibre formation, cellular elongation and formation of intercellular gaps after 15 min; at 90 min, there was also evidence of microspike formation and extension of spindle processes from the cell surface. Treatment of human neutrophil suspensions with 200 nM phorbol myristyl acetate (PMA), n-formyl-methionyl leucylphenylalanine (fMLP, 10 nM), interleukin-8 (IL-8, 10 nM) (but not with leukotriene B(4) (LTB(4)) 100 nM), for 30 min caused significant extracellular release of neutrophil VEGF stores. A permissive role for neutrophil-derived VEGF in facilitating migration across HPAEC monolayers was assessed in experiments using a functional blocking antihuman VEGF antibody. In the presence of this antibody (10 microg/ml), neutrophil migration in response to fMLP (10 nM), IL-8 (10 nM) or LTB(4) (100 nM) was not significantly different to that in the absence of antibody. We conclude that neutrophil-derived VEGF does not play a functional role in facilitating neutrophil migration across pulmonary vascular endothelium, despite its ability to induce cytoskeletal changes and enhance endothelial macromolecular permeability.

1 Read
  • Source
    • "Although increasing interest in therapeutic angiogenesis has focused on vascular endothelial growth factor (VEGF), one of the most potent angiogenic factors, some studies indicate that VEGF, as an early-phase angiogenic factor, often produces immature vessels that are unable to create functional collateral develop- ment [3] [4] [5] . Moreover, uncontrolled long-term expression of VEGF delivered by recombinant adeno-associated virus (rAAV) vector in vivo may result in side effects such as hemangioma formation, retinopathy or arthri- tis [6] . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis in ischemic tissue is a complex and multi-gene event. In the study, we constructed hypoxic response elements (HRE) and the Tet-On advanced double-controlled systems and investigated their effects on the expression of hVEGF165 and angiopoietin-1 (Ang-1) genes in rat cardiomyocytes exposed to hypoxia and pharmacologic induction. We infected neonatal rat cardiomyocytes with recombinant rAAV-rtTA-Rs-M2/rAAV-TRE-Tight-Ang-1 and rAAV-9HRE- hVEGF165. Our results indicated that the viral titer was 1×10(12) vg /mL and the viral purity exceeded 98%. hVEGF 165 expression was induced by hypoxia, but not by normoxia (P < 0.001). Ang-1 expression was evident under doxycycline induction, but undetectable without doxycycline induction (P < 0.001). Immunofluorescence staining showed that positively stained hVEGF165 and Ang-1 protein appeared only under both hypoxia and doxycycline induction. We demonstrate here that HRE and the recombinant Tet-On advanced double gene-controlled systems sensitively regulate the expression of hVEGF165 and Ang-1 genes in an altered oxygen environment and under pharmacological induction in vitro.
    05/2011; 25(3):204-12. DOI:10.1016/S1674-8301(11)60027-4
  • Source
    • "Several growth factors that may have angiogenic activity such as IL-8 and TNF-α have been found to be elevated in the EPF (Taylor et al., 2002). These factors also stimulate for the production and release of VEGF by neutrophils (Webb et al., 1998; Cullen et al., 2000), and a combination of VEGF and TNF-α might have an additive effect on angiogenesis. This study focused on IL-8 and TNF-α as candidate molecules in the EPF to stimulate neutrophils. "
    [Show abstract] [Hide abstract]
    ABSTRACT: An increase in the level of the vascular endothelial growth factor (VEGF) production has been reported in the peritoneal fluid (PF) of endometriosis patients. This suggests that changes in the vascular permeability and angiogenesis play an important role in the pathophysiology of this disease. This study examined the effects of the PF obtained from endometriosis patients on the release of VEGF by neutrophils and monocytes. Neutrophils and monocytes were obtained from young healthy volunteers and cultured with the PF obtained from either endometriosis patients (EPF) (n=18) or a control group (CPF) (n=4). A human monocyte/macrophage cell line, THP-1, was cultured with either 10% EPF or 10% CPF. The PF and culture supernatants were assayed for VEGF using ELISA. Real-time PCR and Western blotting were used to measure the VEGF mRNA and protein expression level, respectively. The VEGF levels were higher in the EPF than in the CPF (591+/-75 versus 185+/-31 pg/ml, P<0.05). However, the level of VEGF released by THP-1 cells in CPF and EPF was similar. The EPF induced the release of VEGF by neutrophils, but no VEGF was released by monocytes. The VEGF mRNA expression levels in the neutrophils were higher in the EPF, which was abrogated by cycloheximide, suggesting that the EPF induces the production of VEGF in neutrophils. Neutralizing antibodies against IL-8 and TNF-alpha did not completely prevent the EPF-induced release of VEGF by the neutrophils, even though these growth factors stimulated the release of VEGF by neutrophils. There was a positive correlation between the VEGF and IL-10 concentrations in the EPF (correlation coefficient=0.549, P=0.012, n=18), but the neutralizing antibody of IL-10 did not affect the release of VEGF by the EPF-treated neutrophils. The EPF induced the production and release of VEGF by neutrophils, suggesting that neutrophils may be a source of peritoneal VEGF. In addition, neutrophil-derived VEGF might be a marker for diagnosing endometriosis.
    Human Reproduction 07/2006; 21(7):1846-55. DOI:10.1093/humrep/del077 · 4.57 Impact Factor
  • Source

Show more