A bacterial cytochrome c heme lyase. CcmF forms a complex with the heme chaperone CcmE and CcmH but not with apocytochrome c.

Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland.
Journal of Biological Chemistry (Impact Factor: 4.65). 04/2002; 277(10):7657-63. DOI: 10.1074/jbc.M110979200
Source: PubMed

ABSTRACT Biogenesis of c-type cytochromes in Escherichia coli involves a number of membrane proteins (CcmA-H), which are required for the transfer of heme to the periplasmically located apocytochrome c. The pathway includes (i) covalent, transient binding of heme to the periplasmic domain of the heme chaperone CcmE; (ii) the subsequent release of heme; and (iii) transfer and covalent attachment of heme to apocytochrome c. Here, we report that CcmF is a key player in the late steps of cytochrome c maturation. We demonstrate that the conserved histidines His-173, His-261, His-303, and His-491 and the tryptophan-rich signature motif of the CcmF protein family are functionally required. Co-immunoprecipitation experiments revealed that CcmF interacts directly with the heme donor CcmE and with CcmH but not with apocytochrome c. We propose that CcmFH forms a bacterial heme lyase complex for the transfer of heme from CcmE to apocytochrome c.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytochrome c maturation (ccm) in many bacteria, archaea, and plant mitochondria requires eight membrane proteins, CcmABCDEFGH, called system I. This pathway delivers and attaches heme covalently to two cysteines (of Cys-Xxx-Xxx-Cys-His) in the cytochrome c. All models propose that CcmFH facilitates covalent attachment of heme to the apocytochrome; namely, that it is the synthetase. However, holocytochrome c synthetase activity has not been directly demonstrated for CcmFH. We report formation of holocytochromes c by CcmFH and CcmG, a periplasmic thioredoxin, independent of CcmABCDE (we term this activity CcmFGH-only). Cytochrome c produced in the absence of CcmABCDE is indistinguishable from cytochrome c produced by the full system I, with a cleaved signal sequence and two covalent bonds to heme. We engineered increased cytochrome c production by CcmFGH-only, with yields approaching those from the full system I. Three conserved histidines in CcmF (TM-His1, TM-His2, and P-His1) are required for activity, as are the conserved cysteine pairs in CcmG and CcmH. Our findings establish that CcmFH is the system I holocytochrome c synthetase. Although we discuss why this engineering would likely not replace the need for CcmABCDE in nature, these results provide unique mechanistic and evolutionary insights into cytochrome c biosynthesis.
    Molecular Microbiology 01/2014; · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytochromes c comprise a diverse and widespread family of proteins, containing covalently bound heme, that are central to the life of most organisms. In many bacteria and in certain mitochondria, the synthesis of cytochromes c is performed by a complex post-translational modification apparatus called System I (or cytochrome c maturation, Ccm, system). In Escherichia coli there are eight maturation proteins, several of which are involved in heme handling, but the mechanism of heme transfer from one protein to the next is not known. Attachment of the heme to the apocytochrome occurs via a novel covalent bond to a histidine residue of the heme chaperone CcmE. The discovery of a variant maturation system (System I*) has provided a new tool for studying cytochrome c assembly because the variant CcmE functions via a cysteine residue in the place of the histidine of System I. In this work, we use site-directed mutagenesis on both maturation systems to probe the function of the individual component proteins, as well as their concerted action in transferring heme to the cytochrome c substrate. The roles of CcmA, CcmC, CcmE and CcmF in the heme delivery process are compared between System I and I*. We show that a previously proposed quinone-binding site on CcmF is not essential for either system. Significant differences in the heme chemistry involved in the formation of cytochromes c in the variant system add new pieces to the cytochrome c biogenesis puzzle.
    Biochemistry 09/2013; · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytochromes c are ubiquitous heme proteins that are found in most living organisms and are essential for various energy production pathways as well as other cellular processes. Their biosynthesis relies on a complex post-translational process, called cytochrome c biogenesis, responsible for the formation of stereo-specific thioether bonds between the vinyl groups of heme b (protoporphyrin IX-Fe) and the thiol groups of apocytochromes c heme-binding site (C1XXC2H) cysteine residues. In some organisms this process involves up to nine (CcmABCDEFGHI) membrane proteins working together to achieve heme ligation, designated the Cytochrome c maturation (Ccm)-System I. Here, we review recent findings related to the Ccm-System I found in bacteria, archaea and plant mitochondria, with an emphasis on protein interactions between the Ccm components and their substrates (apocytochrome c and heme). We discuss the possibility that the Ccm proteins may form a multi subunit supercomplex (dubbed “Ccm machine”), and based on the currently available data, we present an updated version of a mechanistic model for Ccm. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
    Biochimica et Biophysica Acta 01/2014; · 4.66 Impact Factor