Tumor induction by an Lck-MyrAkt transgene is delayed by mechanisms controlling the size of the thymus.

Kimmel Cancer Center, Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2002; 98(26):14967-72. DOI: 10.1073/pnas.231467698
Source: PubMed

ABSTRACT Transgenic mice expressing MyrAkt from a proximal Lck promoter construct develop thymomas at an early age, whereas transgenic mice expressing constitutively active Lck-AktE40K develop primarily tumors of the peripheral lymphoid organs later in life. The thymus of 6- to 8-week-old MyrAkt transgenic mice is normal in size but contains fewer, larger cells than the thymus of nontransgenic control and AktE40K transgenic mice. Earlier studies had shown that cell size and cell cycle are coordinately regulated. On the basis of this finding, and our observations that the oncogenic potential of Akt correlates with its effect on cell size, we hypothesized that mechanisms aimed at maintaining the size of the thymus dissociate cell size and cell cycle regulation by blocking MyrAkt-promoted G(1) progression and that failure of these mechanisms may promote cell proliferation resulting in an enlarged neoplastic thymus. To address this hypothesis, we examined the cell cycle distribution of freshly isolated and cultured thymocytes from transgenic and nontransgenic control mice. The results showed that although neither transgene alters cell cycle distribution in situ, the MyrAkt transgene promotes G(1) progression in culture. Freshly isolated MyrAkt thymocytes express high levels of cyclins D2 and E and cdk4 but lower than normal levels of cyclin D3 and cdk2. Cultured thymocytes from MyrAkt transgenic mice, on the other hand, express high levels of cyclin D3, suggesting that the hypothesized organ size control mechanisms may down-regulate the expression of this molecule. Primary tumor cells, similar to MyrAkt thymocytes in culture, express high levels of cyclin D3. These findings support the hypothesis that tumor induction is caused by the failure of organ size control mechanisms to down-regulate cyclin D3 and to block MyrAkt-promoted G(1) progression.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of phosphatidylinositol 3-kinase (PI3K) activity has been demonstrated to be critical for correct lymphocyte function. The molecular targets of this lipid kinase have been the subject of extensive research, and many functional effects of PI3K activation are thought to be mediated by the serine-threonine kinase protein kinase B (PKB/c-akt). Genetic analyses in the nematode worm Caenorhabditis elegans have identified a novel PI3K-regulated signaling pathway that regulates organism lifespan through inhibition of a Forkhead (FOX) transcription factor, DAF-16. Recent studies have subsequently revealed an evolutionarily conserved signaling module in higher eukaryotes in which PKB can directly phosphorylate and inactive a family of Forkhead box class O (FOXO) transcription factors. Phosphorylation results in nuclear exclusion and inhibition of transcription. FOXO transcription factors have been found to play critical roles in regulation of proliferation, apoptosis and control of oxidative stress. This occurs through both activation and repression of target gene expression by multiple mechanisms. Here the regulation and function of these transcription factors is discussed with specific relevance to immune homeostasis. A greater understanding of the regulation and function of this signaling pathway in lymphocytes may provide novel therapeutic opportunities for immune diseases.
    The Journal of Immunology 09/2003; 171(4):1623-9. DOI:10.4049/jimmunol.171.4.1623 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Postnatal growth of the heart is primarily achieved through hypertrophy of individual myocytes. Cardiac growth observed in athletes represents adaptive or physiological hypertrophy, whereas cardiac growth observed in patients with hypertension or valvular heart diseases is called maladaptive or pathological hypertrophy. These two types of hypertrophy are morphologically, functionally, and molecularly distinct from each other. The serine/threonine protein kinase Akt is activated by various extracellular stimuli in a phosphatidylinositol-3 kinase-dependent manner and regulates multiple aspects of cellular functions including survival, growth and metabolism. In this review we will discuss the role of the Akt signaling pathway in the heart, focusing on the regulation of cardiac growth, contractile function, and coronary angiogenesis. How this signaling pathway contributes to the development of physiological/pathological hypertrophy and heart failure will also be discussed.
    Genes & Development 01/2007; 20(24):3347-65. DOI:10.1101/gad.1492806 · 12.64 Impact Factor
  • Source


Available from