Article

Epoxyisoprostane and epoxycyclopentenone phospholipids regulate monocyte chemotactic protein-1 and interleukin-8 synthesis - Formation of these oxidized phospholipids in response to interleukin-1 beta

Department of Medicine, University of California, Los Angeles, Los √Āngeles, California, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 04/2002; 277(9):7271-81. DOI: 10.1074/jbc.M107602200
Source: PubMed

ABSTRACT Monocyte recruitment to the vessel wall, mediated by monocyte chemotactic protein-1 (MCP-1) and interleukin-8 (IL-8), plays an important role in atherogenesis. We have shown previously that minimally oxidized low density lipoprotein, oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (Ox-PAPC), activates endothelial cells to produce MCP-1 and IL-8. By using liquid chromatography/mass spectrometry methods coupled with bioassay, we report a family of epoxyisoprostane (PEIPC) and epoxycyclopentenone (PECPC) phospholipids that are the components of Ox-PAPC responsible for the majority of this activity. Ox-PAPC contains five chromatographically distinguishable active PEIPC components (m/z 825.5) and four PECPC components (m/z 810.5). All nine components induced endothelial cell synthesis of IL-8 and MCP-1 in a dose-dependent fashion between 0.1 and 5 microm concentrations. The five PEIPC components had identical functional groups and all underwent dehydration to produce m/z 810.5. We present evidence that these phospholipids are regioisomers with epoxide groups at the 5,6-, 8,9-, 11,12-, or 14,15-positions of the sn-2 fatty acid and their epoxide groups is important for biological activity. We have shown previously that peroxisome proliferator-activated receptor alpha is involved in MCP-1 synthesis in response to Ox-PAPC. We now show that PEIPC and PECPC isomers are potent activators of peroxisome proliferator-activated receptor alpha. PEIPC and PECPC isomers are strongly recognized by specific circulating murine natural autoantibodies (EO6) and accumulate in cells treated with IL-1beta. These studies demonstrate that PEIPC and PECPC isomers are potent activators of endothelial cells increasing synthesis of IL-8 and MCP-1. Their accumulation in cells exposed to cytokines and in atherosclerotic lesions suggests that these lipids may play a role in a number of chronic disease processes.

0 Followers
 · 
55 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is the main underlying cause of major cardiovascular diseases such as stroke and heart attack. Oxidized phospholipids such as oxidized 1-palmitoyl-2-arachidonoyl-sn-Glycero-3-phosphorylcholine (OxPAPC) accumulate in lesions of and promote atherosclerosis. OxPAPC activates endothelial cells, a critical early event of atherogenesis. Epoxyisoprostane E2 (EI) is an oxidized fatty acid contained at the sn-2 position of 1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine (PEIPC), the most active component of OxPAPC in regulating inflammation. OxPAPC and its components including PEIPC activate endothelial cells to express an array of genes in different categories including oxidative stress response genes such as tumor suppressor gene OKL38 and Hemeoxygenase-1 (HO-1). EI can be released by lipase from PEIPC. In this study, we examined the ability of EI to stimulate oxidative stress response in endothelial cells. EI released from OxPAPC and synthetic EI stimulated the expression of oxidative stress response gene OKL38 and antioxidant gene HO-1. Treatment of endothelial cells with EI increased the production of superoxide. NADPH oxidase inhibitor Apocynin and superoxide scavenger N-acetyl-cysteine (NAC) significantly attenuated EI-stimulated expression of OKL38 and HO-1. We further demonstrated that EI activated oxidative stress-sensitive transcription factor Nrf2. Silencing of Nrf2 with siRNA significantly reduced EI stimulated expression of OKL38 and HO-1. Thus, we demonstrated that EI induced oxidative stress in endothelial cells leading to increased expression of oxidative stress response gene OKL38 and HO-1 via Nrf2 signaling pathway relevant to atherosclerosis.
    Biochemical and Biophysical Research Communications 01/2014; DOI:10.1016/j.bbrc.2014.01.016 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is the leading pathological contributor to cardiovascular morbidity and mortality worldwide. As its complex pathogenesis has been gradually unwoven, the regime of treatments and therapies has increased with still much ground to cover. Active research in the past decade has attempted to develop antiatherosclerosis vaccines with some positive results. Nevertheless, it remains to develop a vaccine against atherosclerosis with high affinity, specificity, efficiency, and minimal undesirable pathology. In this review, we explore vaccine development against atherosclerosis by interpolating a number of novel findings in the fields of vascular biology, immunology, and bioinformatics. With recent technological breakthroughs, vaccine development affords precision in specifying the nature of the desired immune response--useful when addressing a disease as complex as atherosclerosis with a manifold of inflammatory and autoimmune components. Moreover, our exploration of available bioinformatic tools for epitope-based vaccine design provides a method to avoid expenditure of excess time or resources.
    BioMed Research International 04/2010; 2010:459798. DOI:10.1155/2010/459798 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence points to the role of oxidized phospholipids as modulators of inflammatory processes. These modified phospholipids are derived from lipoproteins or cellular membranes and accumulate at sites of inflammation such as atherosclerotic lesions. It has been shown that oxidized phospholipids influence a variety of cellular functions such as chemokine production and expression of adhesion molecules. Furthermore, recent reports indicate that oxidized phospholipids act as ligands for pattern-recognition receptors which detect conserved pathogen-associated molecular patterns during innate immune defense. Thus, the diversity of individual phospholipid oxidation products reflects the many aspects of the inflammatory process they influence. In this review, we focus on structural features used to classify different oxidized phospholipids and how they relate to specific biological responses. As the chemical identification of oxidized phospholipid products proceeds, distinctive structural motifs emerge that can help us to understand the mechanism of action of these unique compounds and how to intervene for therapeutic purposes.
    Current Pharmaceutical Design 02/2004; 10(8):915-21. DOI:10.2174/1381612043452929 · 3.29 Impact Factor