A novel Schistosoma mansoni G protein-coupled receptor is responsive to histamine.

Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Que., H9X 3V9, Ste. Anne de Bellevue, Canada.
Molecular and Biochemical Parasitology (Impact Factor: 2.24). 02/2002; 119(1):75-86. DOI: 10.1016/S0166-6851(01)00400-5
Source: PubMed

ABSTRACT A new cDNA was cloned from the bloodfluke, Schistosoma mansoni and shown to encode a protein with structural characteristics of a biogenic amine G protein-coupled receptor (GPCR). At the amino acid level, the parasite receptor (SmGPCR) shared about the same level of sequence homology (approximately 30%) with all major types of amine GPCRs and could not be identified on the basis of sequence. SmGPCR exhibited several nonconservative substitutions at key GPCR positions, including an unusual asparagine substitution (Asn(111)) for the highly conserved aspartate of transmembrane (TM) 3. The full-length SmGPCR cDNA was double-tagged with N-terminal FLAG and C-terminal hexahistidine epitopes, and was codon-optimized for expression in cultured HEK293 and COS7 cells. In situ immunofluorescence analyses targeting the two N- and C-terminal epitopes demonstrated that the modified SmGPCR was expressed at high level in mammalian cells and assumed a typical GPCR topology, the N-terminus being extracellular and the C-terminus intracellular. Functional activity assays revealed that SmGPCR was responsive to histamine, which caused a dose-dependent elevation in intracellular Ca2+ (EC50=0.54+/-0.05 microM). An Asn(111)-->Asp mutation had no effect on the responsiveness to histamine, suggesting that SmGPCR does not require the TM3 aspartate for agonist activation, in contrast to most amine GPCRs. None of the other monoamines tested had any significant effect on receptor activity, using assays that measured both Ca2+- and cAMP-mediated signaling. The results suggest that SmGPCR is a novel structural class of histamine receptor that may be unique to flatworms.


Available from: Aisha Mousa, Nov 18, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A partial cDNA sequence was obtained from the human blood fluke, Schistosoma mansoni using a signal sequence trap approach. The full-length cDNA was cloned and termed Sm-7TM. The corresponding open reading frame had 7 membrane spanning domains and shared identity with a small, novel group of seven transmembrane (7TM) receptors from vertebrates and invertebrates, including the human ee3 receptor - a heptahelical protein implicated in neuronal signalling. Phylogenetic analysis of this novel family showed that the Sm-7TM ORF formed a clade with exclusively invertebrate sequences. Based on topology modelling with ee3, Sm-7TM was predicted to possess an intracellular C-terminal tail, which was expressed as a soluble thioredoxin fusion protein (Sm-7TMC) in Escherichia coli and purified using metal ion-affinity chromatography. A polyclonal antiserum against this domain was used to detect Sm-7TM in detergent-soluble parasite extracts and to immunolocalize the receptor to the tegument of adult S. mansoni.
    Parasitology 01/2008; 134(Pt.14):2001-8. DOI:10.1017/S0031182007003393 · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuromodulatory inputs play important roles in shaping the outputs of neural networks. While the actions of neuromodulatory substances over the short term (seconds, minutes) have been examined in detail, far less is known about the possible longer-term (hours) effects of these substances. To investigate this issue, we used the stomatogastric nervous system (STNS) of the lobster to examine the short- and long-term effects of histamine on rhythmic network activity. The application of histamine to the entire STNS had strong inhibitory effects on all three of the STNS networks, observable within minutes. In contrast, longer-term (> 1 h) application of histamine induced the expression of a single, unified rhythm involving neurons from all three networks. Selective application of histamine to different regions of the STNS demonstrated that a unified rhythm arises following the long-term application of histamine to the commissural ganglia (CoGs; modulatory centres), but not the stomatogastric ganglion (site of neural networks). Strikingly, the single rhythm observed following the long-term application of histamine to the CoGs exhibits many similarities with the single rhythm expressed by the embryonic STNS. Together, these results demonstrate that histamine has markedly different short- and long-term effects on network activity; short-term effects arising through direct actions on the networks and long-term effects mediated by actions on modulatory neurons. Furthermore, they indicate that histamine is able to induce the expression of an embryonic-like rhythm in an adult system, suggesting that long-term actions of histamine may play key roles in the development of the STNS networks.
    European Journal of Neuroscience 12/2007; 26(11):3181-92. DOI:10.1111/j.1460-9568.2007.05944.x · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An alignment of serotonin [5-hydroxytryptamine (5-HT)] G protein-coupled receptors identified a lysine at position 4.45 (helix 4) and a small polar residue (serine or cysteine) at 7.45 (helix 7) that occur exclusively in the 5-HT2 receptor family. Other serotonin receptors have a hydrophobic amino acid, typically a methionine, at 4.45 and an invariant asparagine at 7.45. The functional significance of these class-specific substitutions was tested by site-directed mutagenesis of two distantly related 5-HT2 receptors, Caenorhabditis elegans 5-HT2ce and rat 5-HT2C. Residues 4.45 and 7.45 were each mutated to a methionine and asparagine, respectively, or an alanine and the resulting constructs were tested for activity. A K4.45M mutation decreased serotonin-dependent activity (Emax) of the rat 5-HT2C receptor by 60% and that of the C. elegans homologue by 40%, as determined by a fluorometric plate-based calcium assay. The rat mutant also exhibited nearly sixfold higher agonist binding affinity and significantly lower constitutive activity compared with wildtype. Mutagenesis of S7.45 in the C. elegans receptor increased serotonin binding affinity by up to 25-fold and decreased Emax by up to 65%. The same mutations of the cognate C7.45 in rat 5-HT2C produced a smaller fourfold change in the affinity for serotonin and decreased agonist efficacy by up to 50%. Substitutions of S/C7.45 did not produce a significant change in the basal activity of either receptor. All mutants tested exhibited levels of receptor expression similar to the corresponding wildtype based on measurements of specific [3H]-mesulergine binding or flow cytometry analyses. Taken together, these results suggest that K4.45 and S/C7.45 play an important role in the conformational rearrangements leading to agonist-induced activation of 5-HT2 receptors.
    Journal of Neurochemistry 02/2005; 92(2):375-87. DOI:10.1111/j.1471-4159.2004.02867.x · 4.24 Impact Factor