Article

A novel Schistosoma mansoni G protein-coupled receptor is responsive to histamine.

Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Que., H9X 3V9, Ste. Anne de Bellevue, Canada.
Molecular and Biochemical Parasitology (Impact Factor: 2.73). 02/2002; 119(1):75-86. DOI: 10.1016/S0166-6851(01)00400-5
Source: PubMed

ABSTRACT A new cDNA was cloned from the bloodfluke, Schistosoma mansoni and shown to encode a protein with structural characteristics of a biogenic amine G protein-coupled receptor (GPCR). At the amino acid level, the parasite receptor (SmGPCR) shared about the same level of sequence homology (approximately 30%) with all major types of amine GPCRs and could not be identified on the basis of sequence. SmGPCR exhibited several nonconservative substitutions at key GPCR positions, including an unusual asparagine substitution (Asn(111)) for the highly conserved aspartate of transmembrane (TM) 3. The full-length SmGPCR cDNA was double-tagged with N-terminal FLAG and C-terminal hexahistidine epitopes, and was codon-optimized for expression in cultured HEK293 and COS7 cells. In situ immunofluorescence analyses targeting the two N- and C-terminal epitopes demonstrated that the modified SmGPCR was expressed at high level in mammalian cells and assumed a typical GPCR topology, the N-terminus being extracellular and the C-terminus intracellular. Functional activity assays revealed that SmGPCR was responsive to histamine, which caused a dose-dependent elevation in intracellular Ca2+ (EC50=0.54+/-0.05 microM). An Asn(111)-->Asp mutation had no effect on the responsiveness to histamine, suggesting that SmGPCR does not require the TM3 aspartate for agonist activation, in contrast to most amine GPCRs. None of the other monoamines tested had any significant effect on receptor activity, using assays that measured both Ca2+- and cAMP-mediated signaling. The results suggest that SmGPCR is a novel structural class of histamine receptor that may be unique to flatworms.

0 Bookmarks
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In absence of vaccines for the majority of helminths, chemotherapy is still the mainstay for controlling human helminthiases. However, a limited number of drugs are available in the market to combat parasitic helminths in human. Besides, the development and spread of drug resistance have declined the use of most currently available anthelmintics. Clearly, availability of new anthelmintic agents will be essential in the next few years. More research into the mechanisms of drug actions and their targets are eminent for the discovery and development of novel anthelmintic agents. Recent drug discovery techniques mostly rely on mechanism-based screening of compounds on heterologously expressed targets in bacterial, mammalian or yeast cells. Although this is usually a successful approach, it is money- and time-consuming; meanwhile, pharmaceutical companies prefer the tested target that is chosen based on basic research. The nervous system is the site of action of several chemotherapeutics including pesticides and antinematode drugs; accordingly, the nervous system continues to be a promising target. Recent advances in exploring helminths’ nervous system, neurotransmitters and receptors have paved the way for the development of potential agents targeting the nervous system and its components.
    Parasitology Research 06/2014; · 2.85 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinases C (PKCs) and extracellular signal-regulated kinases (ERKs) are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated) throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.
    PLoS neglected tropical diseases. 06/2014; 8(6):e2924.

Full-text (2 Sources)

Download
0 Downloads
Available from
Nov 18, 2014