Regulation of Synaptic Strength by Protein Phosphatase 1

Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
Neuron (Impact Factor: 15.98). 01/2002; 32(6):1133-48. DOI: 10.1016/S0896-6273(01)00554-2
Source: PubMed

ABSTRACT We investigated the role of postsynaptic protein phosphatase 1 (PP1) in regulating synaptic strength by loading CA1 pyramidal cells either with peptides that disrupt PP1 binding to synaptic targeting proteins or with active PP1. The peptides blocked synaptically evoked LTD but had no effect on basal synaptic currents mediated by either AMPA or NMDA receptors. They did, however, cause an increase in synaptic strength following the induction of LTD. Similarly, PP1 had no effect on basal synaptic strength but enhanced LTD. In cultured neurons, synaptic activation of NMDA receptors increased the proportion of PP1 localized to synapses. These results suggest that PP1 does not significantly regulate basal synaptic strength. Appropriate NMDA receptor activation, however, allows PP1 to gain access to synaptic substrates and be recruited to synapses where its activity is necessary for sustaining LTD.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related impairments in hippocampus-dependent learning and memory tasks are not associated with a loss of hippocampal neurons, but may be related to alterations in synaptic integrity. Here we used stereological techniques to estimate spine number in hippocampal subfields using immunostaining for the spine-associated protein, spinophilin, as a marker. Quantification of the immunoreactive profiles was performed using the optical disector/fractionator technique. Aging was associated with a modest increase in spine number in the molecular layer of the dentate gyrus and CA1 stratum lacunosum-moleculare. By comparison, spinophilin protein levels in the hippocampus, measured by Western blot analysis, failed to differ as a function of age. Neither the morphological nor the protein level data were correlated with spatial learning ability across individual aged rats. The results extend current evidence on synaptic integrity in the aged brain, indicating that a substantial loss of dendritic spines and spinophilin protein in the hippocampus are unlikely to contribute to age-related impairment in spatial learning.
    Neurobiology of aging 09/2008; 29(8):1256-64. DOI:10.1016/j.neurobiolaging.2007.02.013 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The strength of synaptic connections in the brain varies with activity, and this plasticity depends on remodeling of the actin cytoskeleton in dendritic spines. Critical to this are the Rho family GTPases, whose activity is controlled by various modulatory proteins, including the Rho-GEF Lfc. In cultured neurons and nonneuronal cells, Lfc has been shown both to bind to microtubules and to regulate the actin cytoskeleton. Significantly, Lfc was found to be concentrated in the dendritic shafts of cultured hippocampal neurons under control conditions but then translocated into spines when neural activity was stimulated. In this study, we used immunohistochemistry and electron microscopy to examine activity-dependent changes in the distribution of Lfc in the neuropil of monkey prefrontal cortex. We found that, although Lfc was concentrated in dendrites, it also had a complex distribution in the neuropil, including being present in spines, axons, terminals, and glial processes. Moreover, Lfc distribution varied in different layers of cortex. By using an in vitro slice preparation of monkey prefrontal cortex, we demonstrated an activity-dependent translocation of Lfc from dendritic shafts to spines. The results of this study support a role for Lfc in activity-dependent spine plasticity and demonstrate the feasibility of studying activity-dependent changes in protein localization in tissue slices.
    The Journal of Comparative Neurology 06/2008; 508(6):927-39. DOI:10.1002/cne.21703 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The scaffold protein PSD-95 promotes the maturation and strengthening of excitatory synapses, functions that require proper localization of PSD-95 in the postsynaptic density (PSD). Here we report that phosphorylation of ser-295 enhances the synaptic accumulation of PSD-95 and the ability of PSD-95 to recruit surface AMPA receptors and potentiate excitatory postsynaptic currents. We present evidence that a Rac1-JNK1 signaling pathway mediates ser-295 phosphorylation and regulates synaptic content of PSD-95. Ser-295 phosphorylation is suppressed by chronic elevation, and increased by chronic silencing, of synaptic activity. Rapid dephosphorylation of ser-295 occurs in response to NMDA treatment that causes chemical long-term depression (LTD). Overexpression of a phosphomimicking mutant (S295D) of PSD-95 inhibited NMDA-induced AMPA receptor internalization and blocked the induction of LTD. The data suggest that synaptic strength can be regulated by phosphorylation-dephosphorylation of ser-295 of PSD-95 and that synaptic depression requires the dephosphorylation of ser-295.
    Neuron 12/2007; 56(3):488-502. DOI:10.1016/j.neuron.2007.09.007 · 15.98 Impact Factor