Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response.

Department of Biology and Curriculum in Genetics and Molecular Biology, CB 3280, 108 Coker Hall, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/2002; 99(1):517-22. DOI: 10.1073/pnas.012452499
Source: PubMed

ABSTRACT Reactive oxygen intermediates (ROI) are strongly associated with plant defense responses. The origin of these ROI has been controversial. Arabidopsis respiratory burst oxidase homologues (rboh genes) have been proposed to play a role in ROI generation. We analyzed lines carrying dSpm insertions in the highly expressed AtrbohD and AtrbohF genes. Both are required for full ROI production observed during incompatible interactions with the bacterial pathogen Pseudomonas syringae pv. tomato DC3000(avrRpm1) and the oomycete parasite Peronospora parasitica. We also observed reduced cell death, visualized by trypan blue stain and reduced electrolyte leakage, in the Atrboh mutants after DC3000(avrRpm1) inoculation. However, enhanced cell death is observed after infection of mutant lines with P. parasitica. Paradoxically, although atrbohD mutation eliminated the majority of total ROI production, atrbohF mutation exhibited the strongest effect on cell death.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As obligate photoautotrophs, plants are inevitably exposed to ultraviolet (UV) radiation. Because of stratospheric ozone depletion, UV has become more and more dangerous to the biosphere. Therefore, it is important to understand UV perception and signal transduction in plants. In the present study, we show that lesion simulating disease 1 (LSD1) and enhanced disease susceptibility 1 (EDS1) are antagonistic regulators of UV-C-induced programmed cell death (PCD) in Arabidopsis thaliana. This regulatory dependence is manifested by a complex deregulation of photosynthesis, reactive oxygen species homeostasis, antioxidative enzyme activity and UV-responsive genes expression. We also prove that a UV-C radiation episode triggers apoptotic-like morphological changes within the mesophyll cells. Interestingly, chloroplasts are the first organelles that show features of UV-C-induced damage, which may indicate their primary role in PCD development. Moreover, we show that Arabidopsis Bax inhibitor 1 (AtBI1), which has been described as a negative regulator of plant PCD, is involved in LSD1-dependent cell death in response to UV-C. Our results imply that LSD1 and EDS1 regulate processes extinguishing excessive energy, reactive oxygen species formation and subsequent PCD in response to different stresses related to impaired electron transport.
    Plant Cell and Environment 02/2015; 38(2):315-530. · 5.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that salicylic acid (SA) plays a critical role in the transcriptional reprograming that occurs during the plant defense response against biotic and abiotic stress. In the course of the defense response, the transcription of different sets of defense genes is controlled in a spatio-temporal manner via SA-mediated mechanisms. Interestingly, different lines of evidence indicate that SA interplays with reactive oxygen species (ROS) and glutathione (GSH) in stressed plants. In this review we focus on the evidence that links SA, ROS, and GSH signals to the transcriptional control of defense genes. We discuss how redox modifications of regulators and co-regulators involved in SA-mediated transcriptional responses control the temporal patterns of gene expression in response to stress. Finally, we examine how these redox sensors are coordinated with the dynamics of cellular redox changes occurring in the defense response to biotic and abiotic stress.
    Frontiers in Plant Science 01/2015; 6:171. DOI:10.3389/fpls.2015.00171 · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biotic stressors, especially pathogenic microorganisms, are rather difficult to detect. In plants, one of the earliest cellular responses following pathogen infection is the production of reactive oxygen species (ROS). In this study, a novel optical device for the early monitoring of Pseudomonas attack was developed; this device measures the ROS level via oxidation-sensitive 2', 7'-dichlorodihydrofluorescein diacetate (H2DCFDA)-mediated fluorescence, which could provide early monitoring of attacks by a range of plant pathogen; ROS bursts were detected in vivo in Arabidopsis thaliana with higher sensitivity and accuracy than those of a commercial luminescence spectrophotometer. Additionally, the DCF fluorescence truly reflected early changes in the ROS level, as indicated by an evaluation of the H2O2 content and the tight association between the ROS and Pseudomonas concentration. Moreover, compared with traditional methods for detecting plant pathogen attacks based on physiological and biochemical measurements, our proposed technique also offers significant advantages, such as low cost, simplicity, convenient operation and quick turnaround. These results therefore suggest that the proposed optical device could be useful for the rapid monitoring of attacks by plant pathogen and yield results considerably earlier than the appearance of visual changes in plant morphology or growth.
    Frontiers in Plant Science 02/2015; 6:96. DOI:10.3389/fpls.2015.00096 · 3.64 Impact Factor


Available from