Beta-carotene uptake and bioconversion to retinol differ between human melanocytes and keratinocytes.

Division of Dermatology, Department of Biomedicine and Surgery, Clinical Research Center, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
Nutrition and Cancer (Impact Factor: 2.47). 02/2001; 39(2):300-6. DOI: 10.1207/S15327914nc392_21
Source: PubMed

ABSTRACT beta-Carotene is one of the carotenoids that has been considered to play a role in the natural defense against ultraviolet-induced skin cancer. It is not known whether epidermal cells are able to accumulate beta-carotene and, subsequently, convert it to vitamin A. We used normal cultured human keratinocytes and melanocytes to study the uptake, and possible bioconversion to retinol, of authentic or [14C]beta-carotene. The uptake was much higher in melanocytes than in keratinocytes, corresponding to a fivefold difference in the intracellular fraction after two days of incubation. An increased level of cellular retinol was noted after one day of beta-carotene incubation. The conversion of [14C]beta-carotene to [14C]retinol peaked at 24 hours of incubation in keratinocytes and melanocytes. The results suggest that beta-carotene can function as a local supply of vitamin A in the skin and that melanocytes are especially likely to store beta-carotene.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular probes for imaging of live cells are of great interest for studying biological and pathological processes. The anionic luminescent conjugated polythiophene (LCP) polythiophene acetic acid (PTAA), has previously been used for vital staining of cultured fibroblasts as well as transformed cells with results indicating differential staining due to cell phenotype. Herein, we investigated the behavior of PTAA in two normal and five transformed cells lines. PTAA fluorescence in normal cells appeared in a peripheral punctated pattern whereas the probe was more concentrated in a one-sided perinuclear localization in the five transformed cell lines. In fibroblasts, PTAA fluorescence was initially associated with fibronectin and after 24 h partially localized to lysosomes. The uptake and intracellular target in malignant melanoma cells was more ambiguous and the intracellular target of PTAA in melanoma cells is still elusive. PTAA was well tolerated by both fibroblasts and melanoma cells, and microscopic analysis as well as viability assays showed no signs of negative influence on growth. Stained cells maintained their proliferation rate for at least 12 generations. Although the probe itself was nontoxic, photoinduced cellular toxicity was observed in both cell lines upon irradiation directly after staining. However, no cytotoxicity was detected when the cells were irradiated 24 h after staining, indicating that the photoinduced toxicity is dependent on the cellular location of the probe. Overall, these studies certified PTAA as a useful agent for vital staining of cells, and that PTAA can potentially be used to study cancer-related biological and pathological processes. © 2015 International Society for Advancement of Cytometry
    Cytometry Part A 01/2015; 87(3). DOI:10.1002/cyto.a.22627 · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts.
    Molecules 08/2014; 19(8):11679-11721. DOI:10.3390/molecules190811679 · 2.10 Impact Factor