Article

Comparison of MET-PET and FDG-PET for differentiation between benign lesions and malignant tumors of the lung

Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
Annals of Nuclear Medicine (Impact Factor: 1.51). 10/2001; 15(5):425-31. DOI: 10.1007/BF02988346
Source: PubMed

ABSTRACT We retrospectively assessed and compared the usefulness of 11C-methionine (MET)-PET with that of 18F-FDG-PET for the differentiation between benign lesions and malignant tumors of the lung.
We examined 101 patients with a suspected lung tumor including 79 patients with primary lung cancer and 22 patients with benign lesions. One hundred and forty PET studies (46 studies with MET-PET and 94 studies with FDG-PET) were performed. Both MET-PET and FDG-PET were performed on 39 patients. The MET-PET was performed 15 minutes after the administration of 67-740 MBq of MET, and FDG-PET 45 minutes after the administration of 30-437 MBq of FDG. The results were then evaluated by the standardized uptake value (SUV).
The MET uptake in lung cancer was 3.69+/-1.22 (n = 37) which was significantly higher than that in benign lesions 1.81+/-1.04 (n = 9) (p < 0.001). The sensitivity, specificity and accuracy of MET-PET were 83.8%, 88.9% and 84.8%, respectively, when 2.66 of SUV was used as the cutoff value. The FDG uptake in lung cancer was 5.94+/-2.89 (n = 75) and was also significantly larger than that in benign lesions 2.46+/-1.01 (n = 19) (p < 0.001). The sensitivity, specificity and accuracy of FDG-PET were 81.3%, 78.9% and 80.9%, respectively (cutoff = 3.20). The MET uptake in the lesions correlated significantly with FDG uptake (r = 0.71, p < 0.001). According to an ROC analysis, the area under the curve for MET-PET (area = 0. 833) was higher than that for FDG-PET (area = 0.828), but the difference was not statistically significant. Furthermore, the combined use of MET-PET and FDG-PET did not improve the diagnostic ability.
In conclusion, both MET-PET and FDG-PET were considered to be equally useful for the differential diagnosis of lung tumors. Furthermore, MET uptake in lung lesions was found to correlate significantly with FDG uptake.

0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although positron emission tomography (PET) using [(18)F]-fluoro-2-deoxy-D-glucose ((18)F-FDG) is established as one of the first-choice imaging modalities in the diagnosis of chest malignancies, there are several problems to solve in clinical practice, such as false positive uptake in inflammatory diseases. The aim of this study was to evaluate the clinical usefulness of an amino acid tracer, α-[N-methyl-(11)C]-methylaminoisobutyric acid ((11)C-MeAIB), in the diagnosis of chest malignancies, in combination with (18)F-FDG. Fifty-nine cases (57 patients, 66 ± 12 years old) who consulted to our institution for the wish to receive differential diagnosis of chest diseases were included. Purpose of the studies were as follows: differential diagnosis of newly developed lung nodules, n = 22; newly developed mediastinal lesions, n = 20; and both, n = 17 (including lung cancer: n = 19, lymphoma: n = 1, other cancers: n = 2, sarcoidosis: n = 15, non-specific inflammation: n = 18, other inflammatory: n = 4, respectively). Whole-body static PET or PET/CT scan was performed 20 and 50 min after the IV injection of (11)C-MeAIB and (18)F-FDG, respectively. (11)C-MeAIB uptake of malignant and benign lesions was statistically different both in pulmonary nodules (p < 0.005) and in mediastinal lesions (p < 0.0005). In visual differential diagnosis, (11)C-MeAIB showed higher results (specificity: 73 %, accuracy: 81 %), compared to those in (18)F-FDG (60, 73 %, respectively). In cases of sarcoidosis, (11)C-MeAIB showed higher specificity (80 %) with lower uptake (1.8 ± 0.7) in contrast to the lower specificity (60 %) with higher uptake of (18)F-FDG (7.3 ± 4.5). (11)C-MeAIB PET/CT was useful in the differential diagnosis of pulmonary and mediastinal mass lesions found on CT. (11)C-MeAIB PET or PET/CT showed higher specificity than that of (18)F-FDG PET/CT in differentiating between benign and malignant disease. Our data suggest that the combination of (18)F-FDG and (11)C-MeAIB may improve the evaluation of chest lesions, when CT and (18)F-FDG PET/CT are equivocal.
    Annals of Nuclear Medicine 07/2013; 27(9). DOI:10.1007/s12149-013-0750-4 · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Positron emission tomography (PET) combined with fludeoxyglucose F 18 (FDG) is recommended for the noninvasive diagnosis of pulmonary nodules suspicious for lung cancer. In populations with endemic infectious lung disease, FDG-PET may not accurately identify malignant lesions.
    JAMA The Journal of the American Medical Association 09/2014; 312(12):1227-1236. DOI:10.1001/jama.2014.11488 · 30.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: S-(11)C-methyl-L-cysteine (LMCYS) is an attractive amino acid tracer for clinical tumor positron emission tomography (PET) imaging. D-isomers of some radiolabeled amino acids are potential PET tracers for tumor imaging. In this work, S-(11)C-methyl-D-cysteine (DMCYS), a D-amino acid isomer of S-(11)C-methyl-cysteine for tumor imaging was developed and evaluated. DMCYS was prepared by (11)C-methylation of the precursor D-cysteine, with an uncorrected radiochemical yield over 50 % from (11)CH3I within a total synthesis time from (11)CO2 about 12 min. In vitro competitive inhibition studies showed that DMCYS uptake was primarily transported through the Na(+)-independent system L, and also the Na(+)-dependent system B(0,+) and system ASC, with almost no system A. In vitro incorporation experiments indicated that almost no protein incorporation was found in Hepa 1-6 hepatoma cell lines. Biodistribution studies demonstrated higher uptake of DMCYS in pancreas and liver at 5 min post-injection, relatively lower uptake in brain and muscle, and faster radioactivity clearance from most tissues than those of L-isomer during the entire observation time. In the PET imaging of S180 fibrosarcoma-bearing mice and turpentine-induced inflammatory model mice, 2-(18)F-fluoro-2-deoxy-D-glucose (FDG) exhibited significantly high accumulation in both tumor and inflammatory lesion with low tumor-to-inflammation ratio of 1.40, and LMCYS showed low tumor-to-inflammation ratio of 1.64 at 60 min post-injection. By contrast, DMCYS showed moderate accumulation in tumor and very low uptake in inflammatory lesion, leading to relatively higher tumor-to-inflammation ratio of 2.25 than (11)C-methyl-L-methionine (MET) (1.85) at 60 min post-injection. Also, PET images of orthotopic transplanted glioma models demonstrated that low uptake of DMCYS in normal brain tissue and high uptake in brain glioma tissue were observed. The results suggest that DMCYS is a little better than the corresponding L-isomers as a potential PET tumor-detecting agent and is superior to MET and FDG in the differentiation of tumor from inflammation.
    Amino Acids 12/2014; 47(4). DOI:10.1007/s00726-014-1899-4 · 3.65 Impact Factor