Selective inhibitor of Janus tyrosine kinase 3, PNU156804, prolongs allograft survival and acts synergistically with cyclosporine but additively with rapamycin.

Department of Surgery/Division of Immunology and Organ Transplantation and University of Texas Medical School at Houston, USA.
Blood (Impact Factor: 9.06). 02/2002; 99(2):680-9.
Source: PubMed

ABSTRACT Janus kinase 3 (Jak3) is a cytoplasmic tyrosine (Tyr) kinase associated with the interleukin-2 (IL-2) receptor common gamma chain (gamma(c)) that is activated by multiple T-cell growth factors (TCGFs) such as IL-2, -4, and -7. Using human T cells, it was found that a recently discovered variant of the undecylprodigiosin family of antibiotics, PNU156804, previously shown to inhibit IL-2-induced cell proliferation, also blocks IL-2-mediated Jak3 auto-tyrosine phosphorylation, activation of Jak3 substrates signal transducers and activators of transcription (Stat) 5a and Stat5b, and extracellular regulated kinase 1 (Erk1) and Erk2 (p44/p42). Although PNU156804 displayed similar efficacy in blocking Jak3-dependent T-cell proliferation by IL-2, -4, -7, or -15, it was more than 2-fold less effective in blocking Jak2-mediated cell growth, its most homologous Jak family member. A 14-day alternate-day oral gavage with 40 to 120 mg/kg PNU156804 extended the survival of heart allografts in a dose-dependent fashion. In vivo, PNU156804 acted synergistically with the signal 1 inhibitor cyclosporine A (CsA) and additively with the signal 3 inhibitor rapamycin to block allograft rejection. It is concluded that inhibition of signal 3 alone by targeting Jak3 in combination with a signal 1 inhibitor provides a unique strategy to achieve potent immunosuppression.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Tyrosine kinase inhibitors (TKi) hold promise as a treatment for a variety of disorders ranging from those in oncology to diseases thought as immune mediated. Tyrphostin AG490 is a potent Jak-Stat TKi shown effective in the prevention of allograft transplant rejection, experimental autoimmune disease, as well as the treatment of cancer. However, given its ability to modulate this important but pleiotropic intracellular pathway, we thought that it is important to examine its effects on glucose metabolism and expression of major transcription factors and adipokines associated with insulin insensitivity and diabetes. We investigated the metabolic effects of AG490 on glucose levels in vivo using an animal model of diabetes, nonobese diabetic (NOD) mice, and transcription factor expression through assessment of human adipocytes. AG490 treatment of young nondiabetic NOD mice significantly reduced blood glucose levels (p = 0.002). In vitro, treatment of adipocytes with rosiglitazone, an insulin sensitizer that binds to peroxisome proliferator-activated receptor (PPAR) receptors and increases the adipocyte response to insulin, significantly increased the expression of the antidiabetic adipokine adiponectin. Importantly, the combination of rosiglitazone plus Tyrphostin AG490 further increased this effect and was specifically associated with significant upregulation of C-enhanced binding protein (C/EBP) (p < 0.0001). In terms of the mechanism underlying this action, regulatory regions of the PPARγ, ADIPOQ, and C/EBP contain the Stat5 DNA-binding sequences and were demonstrated, by gel shift experiments in vitro. These data suggest that blocking Jak-Stat signaling with AG490 reduces blood glucose levels and modulates the expression of transcription factors previously associated with diabetes, thereby supporting its potential as a therapy for this disease.
    Immunogenetics 10/2012; · 2.89 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: JAK3 is an ideal target for the treatment of immune-related diseases and the prevention of organ allograft rejection. Several JAK3 inhibitors have been identified by biochemical enzymatic assays, but the majority display significant off-target effects on JAK2. Therefore, there is a need to develop new experimental approaches to identify compounds that specifically inhibit JAK3. Here, we show that in 32D/IL-2Rβ cells, STAT5 becomes phosphorylated by an IL-3/JAK2- or IL-2/JAK3-dependent pathway. Importantly, the selective JAK3 inhibitor CP-690,550 blocked the phosphorylation and the nuclear translocation of STAT5 following treatment of cells with IL-2 but not with IL-3. In an attempt to use the cells for large-scale chemical screens to identify JAK3 inhibitors, we established a cell line, 32D/IL-2Rβ/6xSTAT5, stably expressing a STAT5 reporter gene. Treatment of this cell line with IL-2 or IL-3 dramatically increased the reporter activity in a high-throughput format. As expected, CP-690,550 selectively inhibited the activity of the 6xSTAT5 reporter following treatment with IL-2. By contrast, the pan-JAK inhibitor curcumin inhibited the activity of this reporter following treatment with either IL-2 or IL-3. Thus, this study indicates that the STAT5 reporter cell line can be used as an efficacious cellular model for chemical screens to identify selective JAK3 inhibitors.
    Journal of Biomolecular Screening 03/2011; 16(4):443-9. · 2.21 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Analogues of the tripyrrolic natural product prodigiosin bearing an additional methyl and a carbonyl group at the C-ring were synthesised and evaluated. In vitro anticancer activity screening (NCI) and the study of modes of action (copper-mediated cleavage of double-stranded DNA and transmembrane transport of chloride anions) showed that the presence of the methyl group is not detrimental to activity. Furthermore, although the presence of an ester conjugated to the prodigiosene C-ring seems to decrease both pKa and chloride transport efficiency compared to the natural product, these analogues still exhibit a high rate of chloride transport. All analogues exhibit good in vitro anticancer activity and reduced toxicity compared to the natural product: compare an acute systemic toxicity of 100 mg kg(-1) in mice vs. 4 mg kg(-1) for prodigiosin, pointing towards a larger therapeutic window than for the natural product.
    Organic & Biomolecular Chemistry 05/2013; · 3.57 Impact Factor