Article

Signal-specific and phosphorylation-dependent RelB degradation: a potential mechanism of NF-kappa B control

Department of Molecular Pathology, Institute of Pathology, University of Würzburg, D-97080 Würzburg, Germany.
Oncogene (Impact Factor: 8.56). 01/2002; 20(56):8142-7. DOI: 10.1038/sj.onc.1204884
Source: PubMed

ABSTRACT RelB is an unusual member of the Rel/NF-kappaB family of transcription factors which are involved in oncogenic processes. Due to a relaxed control by the IkappaBs, the cytosolic NF-kappaB inhibitors, RelB is constitutively expressed in the nuclei of lymphoid cells. We show here that RelB is inducibly degraded upon activation of T cells in a fashion similar to the IkappaBs. However, RelB degradation differs from that of IkappaBs since it is not induced by TNFalpha but only by T cell receptor or TPA/ionomycin stimulation. Moreover, RelB degradation occurs in three steps: (i) after stimulation RelB is rapidly phosphorylated at amino acids Thr84 and Ser552 followed by (ii) an N-terminal cut and, finally, (iii) the complete degradation in the proteasomes. Since mutation of the two phosphoacceptor sites to non-acceptor sites abolished RelB phosphorylation in vivo and led to the stabilization of the mutated RelB(DM), site-specific phosphorylation appears to be a necessary prerequisite for RelB degradation. RelB is a crucial regulator of NF-kappaB-dependent gene expression. Thus, the signal-induced degradation of RelB should be an important control mechanism of NF-kappaB activity.

0 Bookmarks
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: DTCM-glutarimide (DTCM-G) is a newly found anti-inflammatory agent. In the course of experiments with lymphoma cells, we found that DTCM-G induced specific RelB cleavage. Anticancer agent vinblastine also induced the specific RelB cleavage in human fibrosarcoma HT1080 cells. The site-directed mutagenesis analysis revealed that the Asp205 site in RelB was specifically cleaved possibly by caspase-3 in vinblastine-treated HT1080 cells. Moreover, the cells stably overexpressing RelB Asp205Ala were resistant to vinblastine-induced apoptosis. Thus, the specific Asp205 cleavage of RelB by caspase-3 would be involved in the apoptosis induction by anticancer agents, which would provide the positive feedback mechanism. Copyright © 2014. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 12/2014; 456(3). DOI:10.1016/j.bbrc.2014.12.024 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cells and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as "cellular fragments" is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryocytes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and non-genomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB) family of proteins and peroxisome proliferator-activated receptor gamma (PPARγ). In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the non-genomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and hemostatic functions.
    Frontiers in Immunology 01/2015; 6:48. DOI:10.3389/fimmu.2015.00048
  • [Show abstract] [Hide abstract]
    ABSTRACT: TNFα is a potent cytokine that plays a critical role in numerous cellular processes, particularly immune and inflammatory responses, programmed cell death, angiogenesis, and cell migration. Thus, understanding the molecular mechanisms that mediate TNFα-induced cellular responses is a crucial issue. It is generally accepted that global DNA binding activity of the NF-κB avian reticuloendotheliosis viral (v-rel) oncogene related B (RelB) subunit is not induced upon TNFα treatment in fibroblasts, despite its TNFα-induced nuclear accumulation. Here, we demonstrate that RelB plays a critical role in promoting fibroblast migration upon prolonged TNFα treatment. We identified the two kinases IκB kinase α (IKKα) and IκB kinase β (IKKβ) as RelB interacting partners whose activation by TNFα promotes RelB phosphorylation at serine 472. Once phosphorylated on serine 472, nuclear RelB dissociates from its interaction with the inhibitory protein IκBα and binds to the promoter of critical migration-associated genes, such as the matrix metallopeptidase 3 (MMP3). Further, we show that RelB serine 472 phosphorylation status controls MMP3 expression and promigration activity downstream of TNF receptors. Our findings provide new insights into the regulation of RelB activity and reveal a novel link between selective NF-κB target gene expression and cellular response in response to TNFα.
    Proceedings of the National Academy of Sciences 09/2014; 111(41). DOI:10.1073/pnas.1410124111 · 9.81 Impact Factor