PBK/TOPK Is a Novel Mitotic Kinase Which Is Upregulated in Burkitt's Lymphoma and Other Highly Proliferative Malignant Cells

Greenebaum Cancer Center, University of Maryland, 22 South Greene Street, Baltimore, Maryland 21201, USA.
Blood Cells Molecules and Diseases (Impact Factor: 2.65). 09/2001; 27(5):825-9. DOI: 10.1006/bcmd.2001.0452
Source: PubMed


PBK/TOPK is a recently cloned serine/threonine kinase which is phosphorylated during mitosis. Earlier work indicated that this kinase is upregulated in a Burkitt's lymphoma cell line (GA-10). To determine whether PBK/TOPK is upregulated in other mitotically active neoplastic cell lines and tissues, Northern analysis was performed on a panel of malignant cell lines and on clinical samples from patients with leukemia or lymphoma. While PBK/TOPK mRNA was not detectable in normal peripheral blood cells and was weakly expressed in hyperplastic tonsillar B-cells, significantly higher levels of mRNA were detected in 8 Burkitt's lymphoma cell lines, 10 other neoplastic cell lines, and 2 clinical samples-one derived from a patient with ALL and a second derived from a patient with relapsed myeloma. In addition, Northern analysis of fetal tissues showed upregulated expression of PBK/TOPK in fetal kidney, lung, spleen, brain, and testis. These data suggest that PBK/TOPK expression is increased in highly proliferative malignant cells and during normal fetal development.

3 Reads
  • Source
    • "T-cell-originated protein kinase was described as a MAPKK-like protein involved in p38MAPK and JNK signalling, possibly in a cell-type-dependent manner, and was more recently found to be involved in the ERK/MAPK pathway (Matsumoto et al, 2004; Nandi et al, 2004; Ayllon and O'Connor, 2007; Oh et al, 2007). T-cell-originated protein kinase is overexpressed in highly proliferating normal tissues, foetal tissues and in a wide variety of tumours in vitro, whereas the inhibition of TOPK is shown to lead to apoptosis in breast and melanoma cell lines (Simons-Evelyn et al, 2001; Zhao et al, 2001; Matsumoto et al, 2004; Nandi et al, 2004; Dougherty et al, 2005; Park et al, 2006; Zykova et al, 2006). Most recently, Herrero-Martin et al (2009) evaluated TOPK expression in Ewing sarcoma cell lines and found that the inhibition of TOPK led to a decrease in the proliferation rate and an important change in cell growth, indicating that TOPK could have a significant role in Ewing sarcoma biology. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Our aim was to investigate the prognostic and predictive value of the oncogenic MAPKK-like protein T-cell-originated protein kinase (TOPK) stratified by KRAS and BRAF mutations in patients with sporadic, hereditary and metastatic colorectal cancer (CRC) treated with anti-EGFR therapy. Immunohistochemistry (IHC) for TOPK was performed on four study groups. Group 1 included two subgroups of 543 and 501 sporadic CRC patients used to test the reliability of TOPK expression by IHC. In Group 2, representing an additional 222 sporadic CRCs, the prognostic effect of TOPK stratified by KRAS and BRAF was assessed. The prognostic effect of TOPK was further analysed in Group 3, representing 71 hereditary Lynch syndrome-associated CRC patients. In Group 4, the predictive and prognostic value of TOPK was analysed on 45 metastatic patients treated with cetuximab or panitumumab stratified by KRAS and BRAF gene status. In both sporadic CRC subgroups (Group 1), associations of diffuse TOPK expression with clinicopathological features were reproducible. Molecular analysis of sporadic CRCs in Group 2 showed that diffuse TOPK expression was associated with KRAS and BRAF mutations (p<0.001) and with poor outcome in patients with either mutation in univariate and multivariate analysis (P=0.017). In hereditary patients (Group 3), diffuse TOPK was linked to advanced pT stage. In metastatic patients treated with anti-EGFR therapy (Group 4), diffuse TOPK expression was linked to dismal outcome despite objective response to treatment (P=0.01). TOPK expression is an unfavourable prognostic indicator in sporadic patients with KRAS or BRAF mutations and also in patients with metastatic disease experiencing a response to anti-EGFR therapies. The inhibition of TOPK, which could benefit 30-40% of CRC patients, may represent a new avenue of investigation for targeted therapy.
    British Journal of Cancer 11/2009; 102(1):151-61. DOI:10.1038/sj.bjc.6605452 · 4.84 Impact Factor
  • Source
    • "From evidence it can be inferred that mitotic phosphorylation is required for its catalytic activity. This mitotic kinase may be involved in the activation of lymphoid cells and support testicular functions, with an implied role in the process of spermatogenesis (Simons-Evelyn et al., 2001; Dougherty et al., 2005; Zhu et al., 2007; Nandi et al., 2007). To data, there is no report on the porcine PBK gene. "
    [Show abstract] [Hide abstract]
    ABSTRACT: An investigation of differences in gene expression in the longissimus muscle of Meishan and Large White pigs was undertaken, using the mRNA display technique. A fragment of one differentially expressed gene was isolated and sequenced, whereupon the complete cDNA sequence was then obtained by using the rapid amplification of cDNA ends (RACE). The nucleotide sequence of the gene is not related to any known porcine gene. Sequence analysis revealed that the open reading frame of this gene encodes a protein with 322 amino acids, thus displaying high sequence identity with the PDZ binding kinase (PBK) of eleven other animal species - dog, horse, cattle, human, chimpanzee, crab-eating macaque, rhesus monkey, rat, mouse, gray short-tailed opossum and platypus, so it can be defined as the porcine PBK gene. This gene was finally assigned GeneID:100141310. Phylogenetic tree analysis revealed that the swine PBK gene has a closer genetic relationship with the PBK gene of platypus. Gene expression analysis of eight tissues of a Meishan x Large White cross showed that the porcine PBK gene is differentially expressed in various tissues. Our experiment established the primary foundation for further research on this gene.
    Genetics and Molecular Biology 10/2009; 32(4):771-5. DOI:10.1590/S1415-47572009000400017 · 1.20 Impact Factor
  • Source
    • "The PDZ binding kinase (PBK), which is up-regulated in various neoplasms [61,62] and in genistein-treated cells, has been the focus of attention, especially the elucidation of its role in malignant conversion and as a possible therapeutic target in numerous types of cancers. Although PBK expression has been shown to correlate with proliferation of cancer cells [63], PBK silencing does not prevent progression through the cell-cycle. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Genistein is an isoflavonoid present in soybeans that exhibits anti-carcinogenic properties. The issue of genistein as a potential anti-cancer drug has been addressed in some papers, but comprehensive genomic analysis to elucidate the molecular mechanisms underlying the effect elicited by genistein on cancer cells have not been performed on primary cancer cells, but rather on transformed cell lines. In the present study, we treated primary glioblastoma, rhabdomyosarcoma, hepatocellular carcinoma and human embryonic carcinoma cells (NCCIT) with mu-molar concentrations of genistein and assessed mitotic index, cell morphology, global gene expression, and specific cell-cycle regulating genes. We compared the expression profiles of NCCIT cells with that of the cancer cell lines in order to identify common genistein-dependent transcriptional changes and accompanying signaling cascades. We treated primary cancer cells and NCCIT cells with 50 muM genistein for 48 h. Thereafter, we compared the mitotic index of treated versus untreated cells and investigated the protein expression of key regulatory self renewal factors as OCT4, SOX2 and NANOG. We then used gene expression arrays (Illumina) for genome-wide expression analysis and validated the results for genes of interest by means of Real-Time PCR. Functional annotations were then performed using the DAVID and KEGG online tools. We found that cancer cells treated with genistein undergo cell-cycle arrest at different checkpoints. This arrest was associated with a decrease in the mRNA levels of core regulatory genes, PBK, BUB1, and CDC20 as determined by microarray-analysis and verified by Real-Time PCR. In contrast, human NCCIT cells showed over-expression of GADD45 A and G (growth arrest- and DNA-damage-inducible proteins 45A and G), as well as down-regulation of OCT4, and NANOG protein. Furthermore, genistein induced the expression of apoptotic and anti-migratory proteins p53 and p38 in all cell lines. Genistein also up-regulated steady-state levels of both CYCLIN A and B. The results of the present study, together with the results of earlier studies show that genistein targets genes involved in the progression of the M-phase of the cell cycle. In this respect it is of particular interest that this conclusion cannot be drawn from comparison of the individual genes found differentially regulated in the datasets, but by the rather global view of the pathways influenced by genistein treatment.
    BMC Medical Genomics 11/2008; 1(1):49. DOI:10.1186/1755-8794-1-49 · 2.87 Impact Factor
Show more

Similar Publications