Histopathological changes in gills of the estuarine crab Chasmagnathus granulata (Crustacea-Decapoda) following acute exposure to ammonia.

Dept. Ciências Fisiologicas, Lab. Zoofisiologia, Fundação Universidade Federal do Rio Grande, CP 474, Rio Grande, RS, 91206-900, Brazil.
Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology (Impact Factor: 2.71). 02/2000; 125(2):157-64. DOI: 10.1016/S0742-8413(99)00093-6
Source: PubMed

ABSTRACT Histopathological effects of ammonia on the gills of the estuarine crab Chasmagnathus granulata (Dana, 1851) were evaluated after acute exposure to ammonia concentrations around LC(50) value (17.85 Mm). Disruption of pilaster cells and a subsequent collapse of gill lamellae were the main effects observed. Epithelial necrosis and hyperplasia were also detected. Significant (P<0.05) increases in pCO(2) and lactate, and significant decreases of pO(2) were detected in the haemolymph of ammonia-exposed crabs. These changes suggest that the observed histopathological damage affected gas exchange, possibly leading to death.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Amphipods are an important component of freshwater ecosystems. They are very often used in ecotoxicology, particularly the freshwater amphipod Gammarus pulex. However, there is scarce information on the sensitivity to toxicants of other species within the genus Gammarus. The present study aims to: (1) to compare sensitivities to ivermectin and cadmium between two species of freshwater amphipods (G. pulex and G. fossarum); (2) to compare sensitivities to these toxicants between juveniles and adults within each species; and (3) to assess whether the sensitivity to toxicants of these co-generic species is related with the wideness of their natural distribution area. Eight independent short-term bioassays (96 h) were conducted to assess sensitivity for ivermectin and cadmium for juvenile and adult life stages for each species. The LC50 (mortality) and EC50 (mortality plus immobility) were calculated to 48 and 96 h of continuous exposure. Our results showed that G. pulex was less tolerant to ivermectin than G. fossarum, the reverse being true for cadmium. In general, juveniles of both species were less tolerant to cadmium than adults. In the case of ivermectin, only for G. fossarum EC50 values were different between life stages. These results suggest that the risk assessment of toxicants to freshwater amphipods should include bioassays with the most sensitive species and life stage.
    Ecotoxicology 01/2010; 19(1):133-40. · 2.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the effect of continuous exposure to sublethal ammonia concentrations upon the characteristics of the locomotor activity rhythms in Uca princeps, exposed to artificial tides and light cycles. Adult male crabs were used for standardized 24 h ammonia acute toxicity tests. Sublethal ammonia concentrations were selected considering the results obtained in the acute bioassays as well as the unusual high ammonia concentrations registered in their natural habitat. Three independent groups of eight crabs each were exposed during 15–20 days to 0.125, 3.5, and 18 mg N-TA/L in artificial sea water. Locomotor activity was recorded individually by means of infrared light crossings. Artificially created tidal and light–dark cycles were used along the experiments. The 24 h-LC50 was 186.02 mg N-TA/L. No mortality was registered in the crabs exposed to the sublethal ammonia concentrations. In control groups, organisms showed tidal activity onset mainly in low tide (ebb) and no response to light cycles while ammonia exposed crabs shifted their onset of activity to high tide, and a general increasing activity was observed along the experiment. The obtained results indicate that ammonia affects the entraining features of the tidal activity rhythm and demonstrate that under ammonia sublethal exposure, tides may present relative coordination with light cycles in the tidal activity rhythm of the crabs.
    Biological Rhythm Research 02/2012; · 1.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An appropriate approach to assess the effect of toxicants on aquatic animals is to monitor behavioral endpoints, as they are a link between physiological and ecological processes. A group that can be exposed long-term to low toxic concentrations is benthic macroinvertebrates, as their mobility in aquatic ecosystems is relatively limited. Therefore, the study of behavioral long-term effects in this group is suitable from an ecological point of view, as behavioral effects can appear before mortality. During the last decades there has been an increase in ammonia concentrations in freshwater ecosystems, threatening aquatic animals. The present study focuses on the long-term effects (40 days) of nonionized ammonia on the behavioral activity of the aquatic snail Potamopyrgus antipodarum. One control and three ammonia concentrations (0.02, 0.07, and 0.13 mg N-NH(3)/L) were used in triplicate, and the activity of snails (as mean time to start normal movement) and immobility were recorded for each treatment after 0, 10, 20, 30, and 40 days of continuous exposure to nonionized ammonia. The results show that P. antipodarum presented a high tolerance to lethal long-term effects of nonionized ammonia, as no animal died during the bioassay. However, the behavioral activity of snails was a very sensitivity endpoint, as a mean nonionized ammonia concentration of 0.07 mg N-NH(3)/L affected P. antipodarum. The results are discussed and compared with the available literature on long-term effects of ammonia on freshwater macroinvertebrates. Additionally, the ammonia water quality criteria, NOECs, LOECs, and long-term LCs are discussed on the basis of the current available data for freshwater macroinvertebrates.
    Archives of Environmental Contamination and Toxicology 12/2008; 56(4):796-802. · 2.01 Impact Factor


Available from
May 15, 2014