Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species

Department of Chemistry, University of Roorkee, India.
Water Research (Impact Factor: 5.32). 01/2002; 35(17):4079-85. DOI: 10.1016/S0043-1354(01)00138-5
Source: PubMed

ABSTRACT Biosorption of heavy metals is an effective technology for the treatment of industrial wastewaters. Results are presented showing the sorption of Cr(VI) from solutions by biomass of filamentous algae Spirogyra species. Batch experiments were conducted to determine the adsorption properties of the biomass and it was observed that the adsorption capacity of the biomass strongly depends on equilibrium pH. Equilibrium isotherms were also obtained and maximum removal of Cr(VI) was around 14.7 x 10(3) mg metal, kg of dry weight biomass at a pH of 2.0 in 120 min with 5 mg/l of initial concentration. The results indicated that the biomass of Spirogyra species is suitable for the development of efficient biosorbent for the removal and recovery of Cr(VI) from wastewater.


Available from: Vinod Kumar Gupta, Jun 14, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of the toxic metal ions, aluminium (Al3+), nickel (Ni2+), and copper (Cu2+), on both the actin and tubulin cytoskeleton of the green alga Spirogyra decimina was studied. Batch cultured cells were grown for different time intervals at concentrations of 10, 15, 40 and 100 microM of aluminium as AlCl3, nickel as NiCl2 and copper as CuSO(4).5H2O. The impact of copper on the morphology of both MTs and AFs was much more prominent than the other two metals. A rapid irreversible depolymerization of cytoskeletal structures occurred, whereas in the presence of aluminium or nickel, changes in the cytoskeleton were slight and reversible to some extent. Nickel changed the orientation of cortical MTs, which turned from a transverse to a skewed or longitudinal direction. Aluminium caused slight depolymerization of the cytoskeleton, which reverted spontaneously to the normal cytoskeletal state (in AlCl3 free nutrient solution). Copper exerted a strong effect on both the MT and AF cytoskeleton, which fragmented and disorganized rapidly. The extent of cytoskeletal damage by copper was dosage and time dependent and AFs were slightly more sensitive than MTs.
    Toxicology in Vitro 09/2008; 22(5):1160-8. DOI:10.1016/j.tiv.2008.03.005 · 3.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The utility of Nordmann fir (Abies nordmanniana (Stev.) Spach. Subsp. nordmanniana) leaves from Eastern Black Sea region for the removal (sorption) of metal ions from aqueous solutions was investigated. For this, the optimum values of pH, time, metal concentration, leaf concentration, leaf particle size and adsorption capacity were determined. Also the recovery conditions of the metals from leaves were studied. Cd metal was selected because of its toxic properties. Freundlich isotherm model was used to describe the adsorption behaviour and the experimental results obtained for Cd(2+) adsorption, followed this model well. The utility of Nordmann fir leaves to remove toxic metals from aqueous solutions was proved. Hence, this study showed that the leaves of Nordmann fir can provide cheap source as biosorbents for toxic metal removal from natural or wastewaters.
    Bioresource Technology 05/2008; 99(6):1992-2000. DOI:10.1016/j.biortech.2007.03.021 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biosorption of Pb(II) ions from aqueous solutions was studied in a batch system by using Candida albicans. The optimum conditions of biosorption were determined by investigating the initial metal ion concentration, contact time, temperature, biosorbent dose and pH. The extent of metal ion removed increased with increasing contact time, initial metal ion concentration and temperature. Biosorption equilibrium time was observed in 30min. The Freundlich and Langmuir adsorption models were used for the mathematical description of biosorption equilibrium and isotherm constants were also evaluated. The maximum biosorption capacity of Pb(II) on C. albicans was determined as 828.50+/-1.05, 831.26+/-1.30 and 833.33+/-1.12mgg(-1), respectively, at different temperatures (25, 35 and 45 degrees C). Biosorption showed pseudo second-order rate kinetics at different initial concentration of Pb(II) and different temperatures. The activation energy of the biosorption (Ea) was estimated as 59.04kJmol(-1) from Arrhenius equation. Using the equilibrium constant value obtained at different temperatures, the thermodynamic properties of the biosorption (DeltaG degrees , DeltaH degrees and DeltaS degrees ) were also determined. The results showed that biosorption of Pb(II) ions on C. albicans were endothermic and spontaneous. The optimum initial pH for Pb(II) was determined as pH 5.0. FTIR spectral analysis of Pb(II) adsorbed and unadsorbed C. albicans biomass was also discussed.
    Journal of Hazardous Materials 04/2008; 161(1):62-7. DOI:10.1016/j.jhazmat.2008.02.122 · 4.33 Impact Factor