Expression of c-erbB receptors and ligands in the bronchial epithelium of asthmatic subjects

School of Medicine, Division of Respiratory Cell and Molecular Biology, Southampton General Hospital, Southampton, United Kingdom.
Journal of Allergy and Clinical Immunology (Impact Factor: 11.48). 01/2002; 109(1):75-81. DOI: 10.1067/mai.2002.120274
Source: PubMed


The c-erbB family of receptor tyrosine kinases act in a combinatorial fashion to regulate cell behavior. Disturbances in this system have been associated with neoplastic and inflammatory diseases.
Although expression of the epidermal growth factor receptor (EGFR; c-erbB1) is increased in the bronchial epithelium in asthma, there is no information on expression of other members of the c-erbB receptor and ligand family that can modulate EGFR function.
Immunohistochemistry was used to compare expression of EGFR, c-erbB2, c-erbB3, epidermal growth factor, heparin-binding epidermal growth factor-like growth factor, and transforming growth factor alpha in bronchial biopsy specimens from normal and asthmatic subjects. Scrape-wounded monolayers of 16HBE 14o(-) cells were used as an in vitro model of damage and repair. Changes in EGFR, c-erbB2, and c-erbB3 distribution were measured by means of immunocytochemistry, whereas tyrosine phosphorylation was measured by means of immunoprecipitation and Western blotting.
Although epithelial staining for the EGFR was significantly increased in asthmatic epithelium (P <.001), there was no difference in staining for the other receptors and ligands studied. In scrape-wounded epithelial monolayers, tyrosine phosphorylation of EGFR, c-erbB2, and c-erbB3 occurred immediately after damage; however, only EGFR showed a change in expression in response to damage.
Even though EGFR levels are increased in asthma, this is not linked to changes in expression of its activating ligands or other c-erbB receptors. Because bronchial epithelial cells respond to physical damage through activation of several c-erbB family members, the shift in favor of increased EGFR levels in asthma may lead to altered epithelial function by influencing the number and type of heterodimeric signaling complexes, assuming sufficient ligand availability.

10 Reads
  • Source
    • "Over-expression of EGF receptor (EGFR) and its ligands (i.e. EGF, amphiregulin, heparin-binding EGF-like growth factor) has been observed in the airways of adult [19], [20], [21], [22] as well as paediatric asthmatics [23], [24], with levels of EGF and amphiregulin being significantly elevated following acute exacerbations in the latter patient population [25], [26]. This suggests that the pathobiology of asthma involves and may in fact result, in part, from EGFR-mediated dysregulation of injury-repair responses in the airway mucosa. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic damage and repair of the bronchial epithelium are features of asthma. We have previously reported that ex vivo stimulation of normal bronchial epithelial cells with epidermal growth factor (EGF), a key factor of epithelial repair, enhances the mechanisms of neutrophil accumulation, thereby promoting neutrophil defences during acute injury but potentially enhancing inflammation in chronic airway diseases. We have now sought to (i) determine whether this EGF-dependent pro-neutrophil activity is increased in asthma, where EGF and its epithelial receptor are over-expressed, and (ii) elucidate some of the mechanisms underlying this asthmatic epithelial-neutrophil interaction. Primary bronchial epithelial cells (PBEC) from healthy subjects, mild asthmatics and moderate-to-severe asthmatics (Mod/Sev) were stimulated with EGF, a model that mimics a repairing epithelium. Conditioned culture media (EGF-CM) were assessed for neutrophil chemotactic and anti-apoptotic activities and inflammatory mediator production. EGF induced the epithelium to produce soluble mediators with neutrophil chemotactic (p<0.001) and pro-survival (p = 0.021) activities which were related to the clinical severity of asthma (trend p = 0.010 and p = 0.009, respectively). This was associated with enhanced IL-6, IL-8, GM-CSF and TNF-α release, and cytokine-neutralising experiments using EGF-CM from Mod/Sev asthmatics demonstrated a role for GM-CSF in neutrophil survival (p<0.001). Pre-treatment of neutrophils with specific inhibitors of the myeloid-restricted class I phosphatidylinositol-3-OH kinase (PI(3)K) isoforms showed that the EGF-CM from Mod/Sev asthmatics depended on the γ (p<0.021) but not δ isoforms, while neutrophil survival required multiple class I PI(3)Ks. The EGF-induced chemotactic, but not pro-survival activity, involved RhoA signaling in neutrophils (p = 0.012). EGF whose activity is upregulated in asthma induces ex vivo the epithelium from asthmatic patients to produce pro-neutrophil activities; these are related to asthma severity and, in moderate-to-severe asthmatics, involves class IB PI(3)Kγ signaling, providing a potential therapeutic target for neutrophilic forms of asthma.
    PLoS ONE 09/2013; 8(9):e72502. DOI:10.1371/journal.pone.0072502 · 3.23 Impact Factor
  • Source
    • "Treatment with ICS decreases BAL epithelial cell counts concomitant with amelioration of clinical outcomes, possibly reflecting normalization of asthma epithelial fragility (Walters et al., 2007). By contrast, the epidermal growth factor pathway that is up-regulated in epithelial cells in patients with asthma seems to be resistant to ICS treatment (Puddicombe et al., 2000; Polosa et al., 2002). In vitro studies show that fluticasone propionate, at therapeutic concentrations, is able to revert myofibroblasts to a normal phenotype (Cazes et al., 2001), but data on the effect of ICS on airway smooth muscle cells in vivo are not available (Murray, 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: In studies comparing regular versus on-demand treatment for patients with mild persistent asthma, on-demand treatment seems to have a similar efficacy on clinical and functional outcomes, but it does not suppress chronic airway inflammation or airway hyper-responsiveness (AHR) associated with asthma. Data on the efficacy of a continuous treatment with inhaled corticosteroids (ICS) in preventing the progression of asthma are conflicting. There is the possibility that patients without a regular treatment with ICS may develop a more severe asthma associated with airway structural changes (remodeling) and a progressive loss of lung function. However, the possible clinical and functional consequences of persistent, not controlled, airway inflammation in patients with asthma have to be established. Assessment of asthma control should include inflammatory outcomes, such as fraction of exhaled nitric oxide and sputum eosinophil counts. Until the relationships between symptoms, lung function tests, AHR, airway inflammation, exacerbations, and airway remodeling are clarified, regular treatment seems to be generally more appropriate than on-demand treatment to warrant a greater control of asthma. Select subgroups of patients with mild asthma who are well controlled by regular treatment might adopt the on-demand treatment plan as an intermediate step toward the suspension of controller medication. The increasing evidence for heterogeneity of asthma, the growing emphasis on asthma subphenotypes, including molecular phenotypes identified by omics technologies, and their possible implications for different asthma severity and progression and therapeutic response, are changing the paradigm of treating patients with asthma only based on classification of their disease severity to a pharmacological strategy more focused on the individual asthmatic patient. Pharmacological treatment of asthma is going toward a personalized approach.
    Frontiers in Pharmacology 07/2011; 2:35. DOI:10.3389/fphar.2011.00035 · 3.80 Impact Factor
  • Source
    • "It seems likely that such a response is the result of a dysfunctional airway epithelium which exhibits a breakdown in epithelial tight junction integrity compatible with impaired repair following injury.38 This impairment of barrier function is also accompanied by increased expression of epidermal growth factor receptors (EGFRs) and accompanying tyrosine kinase phosphorylation and yet impaired epithelial repair.39,40 This apparent conflict is explained by cell cycle inhibition resulting from increased nuclear translocation of the cell cycle inhibitor P21waf present at the inception of asthma.34,41 "
    [Show abstract] [Hide abstract]
    ABSTRACT: The original concept of asthma being primarily a disease of airways smooth muscle drove the development of bronchodilator drugs. However when it was realised that airway inflammation underpinned the disordered airway function, this gave way to the development of controller therapies such as inhaled cromones and corticosteroids. More recently the discovery of complex interconnecting cytokine and chemokine networks has stimulated the development of biologics with varying success. With the recognition that airway wall "remodelling" is present early in asthma inception and is in part driven by aberrant epithelial-mesenchymal communication both genetic and environmental factors beyond allergen exposure such as virus infection and air pollution are being seen as being increasingly important not only in asthma exacerbations but in the origins of asthma and its evolution into different sub-phenotypes. This brings us round full circle to once again considering that the origins of asthma lie in defects in the formed elements of the airway; the epithelium, smooth muscle, and vasculature. Over the last 25 years Professor You Young Kim has engaged in the exciting discovery science of allergy and asthma and has made an enormous contribution in bringing Korea to the forefront of disease management and research, a position that both he and his colleagues can justly be proud of.
    Allergy, asthma & immunology research 07/2010; 2(3):165-71. DOI:10.4168/aair.2010.2.3.165 · 2.43 Impact Factor
Show more