Expression of c-erbB receptors and ligands in the bronchial epithelium of asthmatic subjects

School of Medicine, Division of Respiratory Cell and Molecular Biology, Southampton General Hospital, Southampton, United Kingdom.
Journal of Allergy and Clinical Immunology (Impact Factor: 11.25). 01/2002; 109(1):75-81. DOI: 10.1067/mai.2002.120274
Source: PubMed

ABSTRACT The c-erbB family of receptor tyrosine kinases act in a combinatorial fashion to regulate cell behavior. Disturbances in this system have been associated with neoplastic and inflammatory diseases.
Although expression of the epidermal growth factor receptor (EGFR; c-erbB1) is increased in the bronchial epithelium in asthma, there is no information on expression of other members of the c-erbB receptor and ligand family that can modulate EGFR function.
Immunohistochemistry was used to compare expression of EGFR, c-erbB2, c-erbB3, epidermal growth factor, heparin-binding epidermal growth factor-like growth factor, and transforming growth factor alpha in bronchial biopsy specimens from normal and asthmatic subjects. Scrape-wounded monolayers of 16HBE 14o(-) cells were used as an in vitro model of damage and repair. Changes in EGFR, c-erbB2, and c-erbB3 distribution were measured by means of immunocytochemistry, whereas tyrosine phosphorylation was measured by means of immunoprecipitation and Western blotting.
Although epithelial staining for the EGFR was significantly increased in asthmatic epithelium (P <.001), there was no difference in staining for the other receptors and ligands studied. In scrape-wounded epithelial monolayers, tyrosine phosphorylation of EGFR, c-erbB2, and c-erbB3 occurred immediately after damage; however, only EGFR showed a change in expression in response to damage.
Even though EGFR levels are increased in asthma, this is not linked to changes in expression of its activating ligands or other c-erbB receptors. Because bronchial epithelial cells respond to physical damage through activation of several c-erbB family members, the shift in favor of increased EGFR levels in asthma may lead to altered epithelial function by influencing the number and type of heterodimeric signaling complexes, assuming sufficient ligand availability.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mucus production is a primary defense mechanism for maintaining lung health. However, the overproduction of mucin (the chief glycoprotein component of mucus) is a common pathological feature in asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and lung cancer. Although it is associated with disease progression, effective therapies that directly target mucin overproduction and hypersecretion are lacking. Recent advances in our understanding of the control of mucin gene expression in the lungs, the cells that produce airway mucins, and the mechanisms used for releasing them into the airways have provided new potentials for the development of efficacious interventions that will be discussed in this review.
    Pharmacology [?] Therapeutics 03/2009; DOI:10.1016/j.pharmthera.2008.11.001 · 7.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While asthma is considered an inflammatory disorder of the conducting airways, it is becoming increasingly apparent that the disease is heterogeneous with respect to immunopathology, clinical phenotypes, response to therapies, and natural history. Once considered purely an allergic disorder dominated by Th2-type lymphocytes, IgE, mast cells, eosinophils, macrophages, and cytokines, the disease also involves local epithelial, mesenchymal, vascular and neurologic events that are involved in directing the Th2 phenotype to the lung and through aberrant injury-repair mechanisms to remodeling of the airway wall. Structural cells provide the necessary "soil" upon which the "seeds" of the inflammatory response are able to take root and maintain a chronic phenotype and upon which are superimposed acute and subacute episodes usually driven by environmental factors such as exposure to allergens, microorganisms, pollutants or caused by inadequate antiinflammatory treatment. Greater consideration of additional immunologic and inflammatory pathways are revealing new ways of intervening in the prevention and treatment of the disease. Thus increased focus on environmental factors beyond allergic exposure (such as virus infection, air pollution, and diet) are identifying targets in structural as well as immune and inflammatory cells at which to direct new interventions.
    Clinical & Experimental Allergy 07/2008; 38(6):872-97. DOI:10.1111/j.1365-2222.2008.02971.x · 4.32 Impact Factor
  • Source