Article

Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis.

Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
Journal of Bacteriology (Impact Factor: 2.69). 03/2002; 184(4):952-61. DOI: 10.1128/jb.184.4.952-961.2002
Source: PubMed

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that may cause severe infections in humans and other vertebrates. In addition, a human clinical isolate of P. aeruginosa, strain PA14, also causes disease in a variety of nonvertebrate hosts, including plants, Caenorhabditis elegans, and the greater wax moth, Galleria mellonella. This has led to the development of a multihost pathogenesis system in which plants, nematodes, and insects have been used as adjuncts to animal models for the identification of P. aeruginosa virulence factors. Another approach to identifying virulence genes in bacteria is to take advantage of the natural differences in pathogenicity between isolates of the same species and to use a subtractive hybridization technique to recover relevant genomic differences. The sequenced strain of P. aeruginosa, strain PAO1, has substantial differences in virulence from strain PA14 in several of the multihost models of pathogenicity, and we have utilized the technique of representational difference analysis (RDA) to directly identify genomic differences between P. aeruginosa strains PA14 and PAO1. We have found that the pilC, pilA, and uvrD genes in strain PA14 differ substantially from their counterparts in strain PAO1. In addition, we have recovered a gene homologous to the ybtQ gene from Yersinia, which is specifically present in strain PA14 but absent in strain PAO1. Mutation of the ybtQ homolog in P. aeruginosa strain PA14 significantly attenuates the virulence of this strain in both G. mellonella and a burned mouse model of sepsis to levels comparable to those seen with PAO1. This suggests that the increased virulence of P. aeruginosa strain PA14 compared to PAO1 may relate to specific genomic differences identifiable by RDA.

0 Bookmarks
 · 
114 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pine wilt disease (PWD) caused by the pine wood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle, has become a worldwide problem. The pathogenic mechanism of PWD continues to remain controversial, which in part may be attributed to the lack of universal materials of B. xylophilus with a high genetic purity. The intrinsic high genetic diversity in B. xylophilus isolates/populations must be a fatal obstacle for performing forward genetics and other molecular approaches to controlling them. We conducted a series of successive full-sib mating of conventional isolates of B. xylophilus to establish a set of inbred strains. Using DNA markers, we also determined their genetic diversity and biological characteristics, such as virulence and reproductive ability. Consequently, the newly established strains yielded a higher genetic purity than the conventional isolates and showed varying virulence despite sharing a common ancestor. The significance of this study lies not only in establishing a set of inbred strains of B. xylophilus with the certification of their purity but also in demonstrating that avirulent strain(s) with a genotype similar to the virulent strains can be obtained by simple successive full-sib mating. This technique is one of the most powerful tools for elucidating the pathogenic mechanism(s) of PWD.
    Applied Entomology and Zoology 11/2012; 47(4). · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies may have overestimated morbidity and mortality due to Klebsiella pneumoniae producing carbapenemase (KPC) Klebsiella pneumoniae infections because of difficulties in modeling patient comorbidities. This pilot study sought to evaluate KPC virulence by combining clinical and Galleria mellonella models in patients with K. pneumoniae blood stream infections (BSIs). G. mellonella were inoculated using KPC(+) and KPC(-) isolates from these patients. Extent and rapidity of insect mortality was analyzed. Patients were stratified by KPC BSI status. Clinical outcomes of mortality and length of stay post-infection for survivors (LOS) were analyzed. Median virulence scores calculated from the insect studies were imputed in the clinical model. The in-vivo model revealed greater mortality in KPC(-) isolates (p < 0.001). Fifteen patients with KPC(+) BSI were matched with 60 patients with KPC(-) BSI. Hospital mortality was greater in the KPC(+) group versus the KPC(-) group (OR 3.79, 95% CI 1.00 - 14.34). LOS was longer in the KPC(+) group (p < 0.01). Conversely the virulence score attenuated the association between KPC(+) status and mortality and LOS in the final translational models. KPC(+) status was associated with decreased virulence in GM. Opposite findings were observed in patients. This pilot study demonstrates that virulence from GM and humans may differ.
    BMC Infectious Diseases 01/2014; 14(1):31. · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immediately after infection, virulent bacteriophages hijack the molecular machinery of their bacterial host to create an optimal climate for phage propagation. For the vast majority of known phages, it is completely unknown which bacterial functions are inhibited or coopted. Early expressed phage genome regions are rarely identified, and often filled with small genes with no homology in databases (so-called ORFans). In this work, we first analyzed the temporal transcription pattern of the N4-like Pseudomonas-infecting phages and selected 26 unknown, early phage ORFans. By expressing their encoded proteins individually in the host bacterium Pseudomonas aeruginosa, we identified and further characterized six antibacterial early phage proteins using time-lapse microscopy, radioactive labeling and pull down experiments. Yeast two-hybrid analysis gave clues to their possible role in phage infection. Specifically, we show that the inhibitory proteins may interact with transcriptional regulator PA0120, the replicative DNA helicase DnaB, the riboflavin metabolism key enzyme RibB, the ATPase PA0657 and the spermidine acetyltransferase PA4114. The dependency of phage infection on spermidine was shown in a final experiment. In the future, knowledge of how phages shut down their hosts as well ass novel phage-host interaction partners could be very valuable in the identification of novel antibacterial targets.
    Cellular Microbiology 07/2014; · 4.82 Impact Factor

Full-text (2 Sources)

Download
37 Downloads
Available from
Jun 5, 2014