Article

Biphasic oxidation of mitochondrial NAD(P)H.

School of Physics, Science Faculty, National University of Colombia, Medellin Branch, Medellin, AA 3840, Colombia.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 03/2002; 291(1):170-5. DOI: 10.1006/bbrc.2002.6417
Source: PubMed

ABSTRACT The redox state of mitochondrial pyridine nucleotides is known to be important for structural integrity of mitochondria. In this work, we observed a biphasic oxidation of endogenous NAD(P)H in rat liver mitochondria induced by tert-butylhydroperoxide. Nearly 85% of mitochondrial NAD(P)H was rapidly oxidized during the first phase. The second phase of NAD(P)H oxidation was retarded for several minutes, appearing after the inner membrane potential collapse and mitochondria swelling. It was characterized by disturbance of ATP synthesis and dramatic permeabilization of the inner membrane to pyridine nucleotides. The second phase was completely prevented by 0.5 microM cyclosporin A or 0.2 mM EGTA or was significantly delayed by 25 microM butylhydroxytoluene or trifluoperazine. The obtained data suggest that the second phase resulted from oxidation of the remaining NADH via the outer membrane electron transport system of permeabilized mitochondria, leading to further oxidation of the remaining NADPH in a transhydrogenase reaction.

0 Bookmarks
 · 
76 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The lignan otobaphenol, (8R,8'R,7R)-4'-hydroxy-5'-methoxy-3,4-methylenedioxy-2',7,8,8'-neolignan, extracted from Virola Aff. Pavonis leaves, completely inhibits at a concentration of 2.5 micro M the Fe(3+)-ascorbate-induced lipoperoxidation of rat liver mitochondria that was determined by oxygen consumption and accumulation of thiobarbituric acid-reactive species. At 25 micro M, it delays the mitochondrial permeability transition induced by tert-butyl hydroperoxide or Ca(2+), substantially inhibits the state 3 respiration, does not affect the state 4 respiration and the ADP/O ratio (with succinate), diminishes the rate of Ca(2+) uptake by mitochondria, and delays the ruthenium red-insensitive uncoupler-induced release of the loaded Ca(2+). Dose-dependent delaying of the calcium-induced swelling of mitochondria in the presence of otobaphenol nonlinearly correlates with its 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity. At 75 micro M and higher, this lignan causes mitochondrial aggregation and is able to aggregate itself, without mitochondria. The formed aggregates of otobaphenol do not cause an aggregation of subsequently added mitochondria. Thus, otobaphenol seems to be a promising target to prevent the oxidative stress death of cells.
    Antioxidants and Redox Signaling 07/2003; 5(3):281-90. · 7.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alloxan and oxidative stress, which have been detected in livers of laboratory animals shortly after in vivo alloxan administration, cause in vitro mitochondrial dysfunction, thus questioning alloxan diabetes as an acceptable model for type 1 diabetes, a model that cannot legitimately be used to investigate mitochondrial metabolism in a diabetic state. In the current study, the blood glucose concentration increased in the drug-treated group of Sprague-Dawley rats (compared with the placebo group) 45 or 60 min after alloxan treatment, whereas at 30 min the blood glucose concentration was unchanged. State 4, state 3, respiratory control, efficiency of oxidative phosphorylation, and mitochondrial ATP synthase activity, assayed using glutamate plus malate, pyruvate plus malate, or succinate as a substrate, were not negatively altered during the entire study. These results indicated that early increases of blood glucose concentration, after in vivo alloxan administration, did not lead to liver mitochondrial dysfunction, suggesting that alloxan diabetes can be used for the study of liver mitochondrial respiration in a diabetic state.
    Canadian Journal of Physiology and Pharmacology 07/2011; 89(7):477-84. · 1.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mitochondrial permeability transition (MPT) plays an important role in cell death. The MPT is triggered by calcium and promoted by oxidative stress, which is often catalyzed by iron. We investigated the induction of the MPT by physiological concentrations of iron. Isolated rat liver mitochondria were initially stabilized with EDTA and bovine serum albumin and energized by succinate or malate/pyruvate. The MPT was induced by 20μM calcium or ferrous chloride. We measured mitochondrial swelling, the inner membrane potential, NAD(P)H oxidation, iron and calcium in the recording medium. Iron effectively triggered the MPT; this effect differed from non-specific oxidative damage and required some residual EDTA in the recording medium. Evidence in the literature suggested two mechanisms of action for the iron: NAD(P)H oxidation due to loading of the mitochondrial antioxidant defense systems and uptake of iron to the mitochondrial matrix via a calcium uniporter. Both of these events occurred in our experiments but were only marginally involved in the MPT induced by iron. The primary mechanism observed in our experiments was the displacement of adventitious/endogenous calcium from the residual EDTA by iron. Although artificially created, this interplay between iron and calcium can well reflect conditions in vivo and could be considered as an important mechanism of iron toxicity in the cells.
    Biochimica et Biophysica Acta 05/2012; 1817(9):1537-49. · 4.66 Impact Factor