The homeodomain protein Vax2 patterns the dorsoventral and nasotemporal axes of the eye.

Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037 USA.
Development (Impact Factor: 6.27). 03/2002; 129(3):797-804.
Source: PubMed

ABSTRACT The vertebrate retina is highly ordered along both its dorsoventral (DV) and nasotemporal (NT) axes, and this order is topographically maintained in its axonal connections to the superior colliculus of the midbrain. Although the graded axon guidance cues that mediate the topographic mapping of retinocollicular connections are increasingly well understood, the transcriptional regulators that set the DV and NT gradients of these cues are not. We now provide genetic evidence that Vax2, a homeodomain protein expressed in the ventral retina, is one such regulator. We demonstrate that in Vax2 mutant mice, retinocollicular projections from the ventral temporal retina are dorsalized relative to wild type. Remarkably, however, this dorsalization becomes systematically less severe in progressively more nasal regions of the ventral retina. Vax2 mutants also exhibit flattened DV and NT gradients of the EphA5, EphB2, EphB3, ephrin-B1 and ephrin-B2 axon guidance cues. Together, these data identify Vax2 as a fundamental regulator of axial polarization in the mammalian retina.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our brain's cognitive performance arises from the coordinated activities of billions of nerve cells. Despite a high degree of morphological and functional differences, all neurons of the vertebrate central nervous system (CNS) arise from a common field of multipotent progenitors. Cell fate specification and differentiation are directed by multistep processes that include inductive/external cues, such as the extracellular matrix or growth factors, and cell-intrinsic determinants, such as transcription factors and epigenetic modulators of proteins and DNA. Here we review recent findings implicating TALE-homeodomain proteins in these processes. Although originally identified as HOX-cofactors, TALE proteins also contribute to many physiological processes that do not require HOX-activity. Particular focus is therefore given to HOX-dependent and -independent functions of TALE proteins during early vertebrate brain development. Additionally, we provide an overview about known upstream and downstream factors of TALE proteins in the developing vertebrate brain and discuss general concepts of how TALE proteins function to modulate neuronal cell fate specification. Developmental Dynamics, 2013. © 2013 Wiley Periodicals, Inc.
    Developmental Dynamics 08/2013; · 2.67 Impact Factor
  • Source
    Planar Cell Polarization during Development: Advances in Developmental Biology and Biochemistry, Edited by M Mlodzik, 07/2014: pages 59-91; Elsevier Science & Technology Books.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: A major step in eye morphogenesis is the transition from optic vesicle to optic cup, which occurs as a ventral groove forms along the base of the optic vesicle. A ventral gap in the eye, or coloboma, results when this groove fails to close. Extrinsic signals, such as fibroblast growth factors (Fgfs), play a critical role in the development and morphogenesis of the vertebrate eye. Whether these extrinsic signals are required throughout eye development, or within a defined critical period remains an unanswered question. Results: Here we show that an early Fgf signal, required as the eye field is first emerging, drives eye morphogenesis. In addition to triggering coloboma, inhibition of this early Fgf signal results in defects in dorsal-ventral patterning of the neural retina, particularly in the nasal retina, and development of the periocular mesenchyme (POM). These processes are unaffected by inhibition of Fgfr signaling at later time points. Conclusions: We propose that Fgfs act within an early critical period as the eye field forms to promote development of the neural retina and POM, which subsequently drive eye morphogenesis. Developmental Dynamics, 2014. © 2014 Wiley Periodicals, Inc.
    Developmental Dynamics 01/2014; · 2.67 Impact Factor


Available from
May 30, 2014