A novel KRIT1/CCM1 truncating mutation in a patient with cerebral and retinal cavernous angiomas.

Faculté de Médecine Lariboisière, Laboratoire de Génétique des Maladies Vasculaires, 10 Avenue de Verdun, EPI 99-21, 75010 Paris, Cedex, France.
Archives of Ophthalmology (Impact Factor: 4.49). 03/2002; 120(2):217-8.
Source: PubMed
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral Cavernous Malformations (CCM) are vascular malformations that are mostly located in the central nervous system (CNS) and occasionally within the skin and retina, which are classified into three types (CCM1, CCM2 and CCM3) by being located at different loci on chromosomes. At present, CCM1 (7q21), CCM2 (7p13-p15) and CCM3 (3q25.2-q27) are respectively linked to krit1 (Krev interaction trapped gene 1), MGC4607 and PDCD10 (programmed cell death 10). In this work, we identified a novel "GTA" deletion mutation at the acceptor splicing site of intron9/exon10 on krit1. The mutation results in an abnormally spliced protein by creating a premature termination code at the 23rd amino acid downstream from the sequence alteration. Our results are consistent with previous research on krit1 mutations and confirm the conclusion that KRIT1 haploinsufficiency may be the underlying mechanism of CCM1.
    Acta Genetica Sinica 03/2006; 33(2):105-10. DOI:10.1016/S0379-4172(06)60028-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral cavernous malformations (CCM) are hamartomatous vascular malformations characterized by abnormally enlarged capillary cavities without intervening brain parenchyma. They cause seizures and focal neurological deficits due to cerebral hemorrhages. CCM loci have already been assigned to chromosomes 7q (CCM1), 7p (CCM2), and 3q (CCM3) and have been identified in 40%, 20%, and 40%, respectively, of families with CCM. Loss-of-function mutations have been identified in CCM1/KRIT1, the sole CCM gene identified to date. We report here the identification of MGC4607 as the CCM2 gene. We first reduced the size of the CCM2 interval from 22 cM to 7.5 cM by genetic linkage analysis. We then hypothesized that large deletions might be involved in the disorder, as already reported in other hamartomatous conditions, such as tuberous sclerosis or neurofibromatosis. We performed a high-density microsatellite genotyping of this 7.5-cM interval to search for putative null alleles in 30 unrelated families, and we identified, in 2 unrelated families, null alleles that were the result of deletions within a 350-kb interval flanked by markers D7S478 and D7S621. Additional microsatellite and single-nucleotide polymorphism genotyping showed that these two distinct deletions overlapped and that both of the two deleted the first exon of MGC4607, a known gene of unknown function. In both families, one of the two MGC4607 transcripts was not detected. We then identified eight additional point mutations within MGC4607 in eight of the remaining families. One of them led to the alteration of the initiation codon and five of them to a premature termination codon, including one nonsense, one frameshift, and three splice-site mutations. All these mutations cosegregated with the disease in the families and were not observed in 192 control chromosomes. MGC4607 is so far unrelated to any known gene family. Its implication in CCMs strongly suggests that it is a new player in vascular morphogenesis.
    The American Journal of Human Genetics 03/2004; 74(2):326-37. DOI:10.1086/381718 · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advances in our understanding of fundamental biological processes can be made by the analysis of defects manifested in inherited diseases. The genes responsible for these genetic syndromes often encode proteins that act at critical points of the pathways that control biological processes such as cell proliferation, cell-cell communication, cellular differentiation, and cell death. This approach has lead to the discovery of novel gene products and/or biochemical pathways involved in disease, genes that in turn play a fundamental role in normal biological processes. This forward genetic approach, focusing on Mendelian disorders of vascular anomalies, has been particularly fruitful for the study of genetic regulation of angiogenesis. This review summarizes the ongoing saga of two genetic syndromes involving disruption of normal vascular morphogenesis. Each inherited disorder involves the focal development of a distinct vascular anomaly. In hereditary hemorrhagic telangiectasia (HHT), the hallmark vascular lesion is termed an arteriovenous malformation, which involves the direct communication of an artery with a vein (arteriovenous shunt), without an intervening capillary bed. For cerebral cavernous malformations (CCM), the lesions are grossly-dilated, closely-packed, capillary-like sinusoidal chambers. The autosomal dominant mode of inheritance of each of these distinct syndromes suggested that the underlying genes might regulate critical aspects of vascular morphogenesis. Emerging but intriguing tales are being told by the genes (and their protein products) mutated in these disorders.
    Human Molecular Genetics 05/2003; 12 Spec No 1:R97-112. DOI:10.1093/hmg/ddg103 · 6.68 Impact Factor