Direct imaging of single-molecules: from dynamics of a single DNA chain to the study of complex DNA-protein interactions.

Laboratoire de Physico-Chimie Curie (UMR CNRS/IC 168), Institut Curie, Section de Recherche, 26 rue d'Ulm, F-75248 Paris, France.
Science Progress 02/2001; 84(Pt 4):267-90. DOI: 10.3184/003685001783238961
Source: PubMed

ABSTRACT Recent years have seen significant advances in the characterization and manipulation of individual molecules. The combination of single-molecule fluorescence and micromanipulation enables one to study physical and biological systems at new length scales, to unravel qualitative mechanisms, and to measure kinetic parameters that cannot be addressed by traditional biochemistry. DNA is one of the most studied biomolecules. Imaging single DNA molecules eliminates important limitations of classical techniques and provides a new method for testing polymer dynamics and DNA-protein interactions. Here we review some applications of this new approach to physical and biological problems, focusing on videomicroscopy observations of individual DNA chains extended in a shear flow. We will first describe data obtained on the stretching, relaxation and dynamics of a single tethered polymer in a shear flow, to demonstrate that the deformation of sheared tethered chains is partially governed by the thermally driven fluctuations of the chain transverse to the flow direction. Next, we will show how single-molecule videomicroscopy can be used to study in real time DNA folding into chromatin, a complex association of DNA and proteins responsible for the packaging of DNA in the nucleus of an eukaryotic cell.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The leitmotif of this work is to exploit Brownian motion for bioanalysis in the context of migration and separation in microfluidic systems operating far from thermal equilibrium. The increasing importance of bioanalysis is based on the fast growing fields of biotechnology and pharmaceutics. They have a great demand of fast, cheap and robust bioanalytical systems. On the one hand, these systems have to provide pure samples, and on the other hand, have to assure the quality of the product. In order to contribute to these demands, fundamental physical phenomena are studied, such as Absolute Negative Mobility, ratchets and diffusion control and their relevance to bioanalytical applications is illustrated. Two possible approaches are pursued: either the phenomena are directly studied with biological samples or with microparticles as models for cells in order to provide a proof of principle.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Certaines protéines qui interagissent avec l'ADN sont capables de trouver rapidement une séquence spécifique de quelques paires de bases. Pour expliquer ce phénomène connu des biologistes depuis longtemps, plusieurs mécanismes de localisation appelés diffusion facilitée ont été proposés. Tous supposent une association initiale à de l'ADN non spécifique, suivie d'une translocation le long de l'ADN jusqu'au site de reconnaissance. Le mécanisme qui sous-tend cette translocation est toujours discuté. Il pourrait impliquer une diffusion linéaire (sliding) et/ou une série de sauts (jumping). Pour élucider ce mécanisme, nous avons utilisé la microscopie de fluorescence par onde évanescente pour visualiser l'interaction non spécifique de l'enzyme de restriction EcoRV. Dans nos expériences in vitro, l'ADN est étiré au dessus d’une surface et les enzymes sont couplées à des fluorophores. Nous avons ainsi visualisé les processus de sliding et de jumping et mesuré le coefficient de diffusion 1D des enzymes (D1 ~ 0,01 µm2.s-1) ainsi que le nombre de saut par interaction (~ 20). Un modèle simple a permis à partir des résultats expérimentaux de caractériser la diffusion facilitée d'EcoRV.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the synthesis of metallic nanowires accomplished by site-specific integration of single DNA duplexes into micro-fabricated contact arrays and their subsequent selective metallization. DNA interconnects between metallic contacts are formed by tethering the ends of DNA molecules, stretched in hydrodynamic flow into a linear conformation, at different gold contact pads via thiol functional groups. To transform the DNA interconnects into metallic cluster chains or nanowires, we use an electroless metal deposition technique where platinum ions bound along the DNA molecules from a salt solution are reduced to metallic clusters of less than 10nm in diameter by applying UV light.
    Applied Surface Science 01/2009; 255(24):9647-9651. · 2.54 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014