Article

Direct imaging of single-molecules: from dynamics of a single DNA chain to the study of complex DNA-protein interactions.

Laboratoire de Physico-Chimie Curie (UMR CNRS/IC 168), Institut Curie, Section de Recherche, 26 rue d'Ulm, F-75248 Paris, France.
Science Progress 02/2001; 84(Pt 4):267-90. DOI: 10.3184/003685001783238961
Source: PubMed

ABSTRACT Recent years have seen significant advances in the characterization and manipulation of individual molecules. The combination of single-molecule fluorescence and micromanipulation enables one to study physical and biological systems at new length scales, to unravel qualitative mechanisms, and to measure kinetic parameters that cannot be addressed by traditional biochemistry. DNA is one of the most studied biomolecules. Imaging single DNA molecules eliminates important limitations of classical techniques and provides a new method for testing polymer dynamics and DNA-protein interactions. Here we review some applications of this new approach to physical and biological problems, focusing on videomicroscopy observations of individual DNA chains extended in a shear flow. We will first describe data obtained on the stretching, relaxation and dynamics of a single tethered polymer in a shear flow, to demonstrate that the deformation of sheared tethered chains is partially governed by the thermally driven fluctuations of the chain transverse to the flow direction. Next, we will show how single-molecule videomicroscopy can be used to study in real time DNA folding into chromatin, a complex association of DNA and proteins responsible for the packaging of DNA in the nucleus of an eukaryotic cell.

Download full-text

Full-text

Available from: Benoit Ladoux, Aug 23, 2015
0 Followers
 · 
71 Views
  • Source
    • "The characterization of polymer dynamics at the level of a single molecule is a first step towards the understanding of mechanical interactions between biomolecules (see e.g. [10] [11] [12] [13] [14] [15] [16] [17]), of the fundamental rheology of polymer solutions, and of the viscoelastic properties of more complex flows (see for example [18] and references therein for elastic turbulence). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate numerically the dynamics of a single polymer in a linear shear flow. The effects of thermal fluctuations and randomly fluctuating velocity gradients are both analyzed. Angular, elongation and tumbling time statistics are measured numerically. We perform analytical calculations and numerical simulations for a linear single-dumbbell polymer model comparing the results with previous theoretical and experimental studies. For thermally driven polymers the balance between relaxation and thermal fluctuations plays a fundamental role, whereas for random velocity gradients the ratio between the intensity of the random part and the mean shear is the most relevant quantity. In the low-noise limit, many universal aspects of the motion of a polymer in a shear flow can be understood in this simplified framework.
    Physica D Nonlinear Phenomena 11/2005; 211(1-2-211):9-22. DOI:10.1016/j.physd.2005.07.016 · 1.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dissertation We study the following fundamental questions in DNA based self-assembly and nanorobotics: How to control errors in self-assembly? How to construct complex nanoscale objects in simpler ways? How to transport nanoscale objects in programmable manner?Fault tolerance in self-assembly: Fault tolerant self-assembly is important for nanofabrication and nanocomputing applications. It is desirable to design compact error-resilient schemes that do not result in the increase in the original size of the assemblies. We present a comprehensive theory of compact error-resilient schemes for algorithmic self-assembly in two and three dimensions, and discuss the limitations and capabilities of redundancy based compact error correction schemes.New and powerful self-assembly model: We develop a reversible self-assembly model in which the glue strength between two juxtaposed tiles is a function of the time they have been in neighboring positions. Under our time-dependent glue model, we can rigorously study and demonstrate catalysis and self-replication in the tile assembly. We can assemble thin rectangles of size k×N using O(logN/loglogN) types of tiles in our model.Modeling DNA based Nanorobotical Devices: We design a framework for a discrete event simulator for DNA based nanorobotical systems. It has two major components: a physical model and a kinetic model. The physical model captures the conformational changes in molecules, molecular motions and molecular collisions. The kinetic model governs the modeling of various reactions in a DNA nanorobotical systems including hybridization, dehybridization and strand displacement.DNA-based molecular devices using DNAzyme: We design a class of nanodevices that are autonomous, programmable, and require no protein enzymes. Our DNAzyme based designs include (1) DNAzyme FSA, a finite state automata device , (2) DNAzyme router for programmable routing of nanostructures on two-dimensional DNA addressable lattice, and (3) DNAzyme doctor, a medical-related application that respond to the under-expression or over-expression of various RNAs, by releasing an RNA.Nanomotor Powered by Polymerase: We, for the first time, attempt to harness the mechanical energy of a polymerase φ29 to construct a polymerase based nanomotor that pushes a cargo on a DNA track. Polymerase based nanomotor has advantage of high speeds of polymerase.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Certaines protéines qui interagissent avec l'ADN sont capables de trouver rapidement une séquence spécifique de quelques paires de bases. Pour expliquer ce phénomène connu des biologistes depuis longtemps, plusieurs mécanismes de localisation appelés diffusion facilitée ont été proposés. Tous supposent une association initiale à de l'ADN non spécifique, suivie d'une translocation le long de l'ADN jusqu'au site de reconnaissance. Le mécanisme qui sous-tend cette translocation est toujours discuté. Il pourrait impliquer une diffusion linéaire (sliding) et/ou une série de sauts (jumping). Pour élucider ce mécanisme, nous avons utilisé la microscopie de fluorescence par onde évanescente pour visualiser l'interaction non spécifique de l'enzyme de restriction EcoRV. Dans nos expériences in vitro, l'ADN est étiré au dessus d’une surface et les enzymes sont couplées à des fluorophores. Nous avons ainsi visualisé les processus de sliding et de jumping et mesuré le coefficient de diffusion 1D des enzymes (D1 ~ 0,01 µm2.s-1) ainsi que le nombre de saut par interaction (~ 20). Un modèle simple a permis à partir des résultats expérimentaux de caractériser la diffusion facilitée d'EcoRV.
Show more