Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells.

Stem Cell Regulation Research, Area of Molecular Therapeutics, Course of Advanced Medicine, Osaka University Graduate School of Medicine, Suita C, Osaka 565-0871, Japan.
Molecular and Cellular Biology (Impact Factor: 5.04). 04/2002; 22(5):1526-36. DOI: 10.1128/MCB.22.5.1526-1536.2002
Source: PubMed

ABSTRACT Transcription factors of the POU family govern cell fate through combinatorial interactions with coactivators and corepressors. The POU factor Oct-3/4 can define differentiation, dedifferentation, or self-renewal of pluripotent embryonic stem (ES) cells in a sensitive, dose-dependent manner (H. Niwa, J.-I. Miyazali, and A. G. Smith, Nat. Genet. 24:372-376, 2000). Here we have developed a complementation assay based on the ability of Oct-3/4 transgenes to rescue self-renewal in conditionally null ES cells and used this to define which domains of Oct-3/4 are required to sustain the undifferentiated stem cell phenotype. Surprisingly, we found that molecules lacking either the N-terminal or C-terminal transactivation domain, though not both, can effectively replace full-length Oct-3/4. Furthermore, a fusion of the heterologous transactivation domain of Oct-2 to the Oct-3/4 POU domain can also sustain self-renewal. Thus, the unique function of Oct-3/4 in ES cell propagation resides in combination of the specific POU domain with a generic proline-rich transactivation domain. Interestingly, however, Oct-3/4 target gene expression elicited by the N- and C-terminal transactivation domains is not identical, indicating that at least one class of genes activated by Oct-3/4 is not required for ES cell propagation.


Available from: Jun-ichi Miyazaki, Jan 10, 2014
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: A DNA nano-tweezer structure (DNA-NT)-based target mRNA detection probe, which uses fluorescence resonance energy transfer (FRET) as a detection signal and works as a single molecule, has been developed. This FRET-paired fluorescent dye-modified DNA-NT, self-assembled from three single-stranded DNAs, alters its structure from open to closed states and produces a FRET signal in response to in vitro transcripts of Hes-1 mRNA. Our results showed that the FRET-based DNA-NT detected both GLUT1 mRNA as a pre-fixed target mRNA model and Hes-1 mRNA as a model expressed inside a living cell. These results confirm the feasibility of using the FRET-based DNA-NT for imaging analysis of target mRNA.
    The Analyst 12/2014; 140(4). DOI:10.1039/C4AN02064B · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epiblast stem cells (EpiSCs) in mice and rats are primed pluripotent stem cells (PSCs). They barely contribute to chimeric embryos when injected into blastocysts. Reprogramming of EpiSCs to embryonic stem cell (ESC)-like cells (rESCs) may occur in response to LIF-STAT3 signaling; however, low reprogramming efficiency hampers potential use of rESCs in generating chimeras. Here, we describe dramatic improvement of conversion efficiency from primed to naive-like PSCs through upregulation of E-cadherin in the presence of the cytokine LIF. Analysis revealed that blocking nuclear localization of β-CATENIN with small-molecule inhibitors significantly enhances reprogramming efficiency of mouse EpiSCs. Although activation of Wnt/β-catenin signals has been thought desirable for maintenance of naive PSCs, this study provides the evidence that inhibition of nuclear translocation of β-CATENIN enhances conversion of mouse EpiSCs to naive-like PSCs (rESCs). This affords better understanding of gene regulatory circuits underlying pluripotency and reprogramming of PSCs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    12/2014; 461(1). DOI:10.1016/j.stemcr.2014.12.003
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pluripotent cells in embryos are situated near the apex of the hierarchy of developmental potential. They are capable of generating all cell types of the mammalian body proper. Therefore, they are the exemplar of stem cells. In vivo, pluripotent cells exist transiently and become expended within a few days of their establishment. Yet, when explanted into artificial culture conditions, they can be indefinitely propagated in vitro as pluripotent stem cell lines. A host of transcription factors and regulatory genes are now known to underpin the pluripotent state. Nonetheless, how pluripotent cells are equipped with their vast multilineage differentiation potential remains elusive. Consensus holds that pluripotency transcription factors prevent differentiation by inhibiting the expression of differentiation genes. However, this does not explain the developmental potential of pluripotent cells. We have presented another emergent perspective, namely, that pluripotency factors function as lineage specifiers that enable pluripotent cells to differentiate into specific lineages, therefore endowing pluripotent cells with their multilineage potential. Here we provide a comprehensive overview of the developmental biology, transcription factors, and extrinsic signaling associated with pluripotent cells, and their accompanying subtypes, in vitro heterogeneity and chromatin states. Although much has been learned since the appreciation of mammalian pluripotency in the 1950s and the derivation of embryonic stem cell lines in 1981, we will specifically emphasize what currently remains unclear. However, the view that pluripotency factors capacitate differentiation, recently corroborated by experimental evidence, might perhaps address the long-standing question of how pluripotent cells are endowed with their multilineage differentiation potential. Copyright © 2015 the American Physiological Society.
    Physiological Reviews 01/2015; 95(1):245-295. DOI:10.1152/physrev.00001.2014 · 29.04 Impact Factor