Collection of airborne fluorinated organics and analysis by gas chromatography/chemical ionization mass spectrometry

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
Analytical Chemistry (Impact Factor: 5.83). 03/2002; 74(3):584-90. DOI: 10.1021/ac015630d
Source: PubMed

ABSTRACT The ubiquitous detection of perfluorooctane sulfonate (PFOS) in humans and animals has produced a need for sensitive and compound-specific analytical methods to determine the environmental distribution of fluorinated organic contaminants. A suite of potential PFOS precursors (sulfonamides) and fluorotelomer alcohols (FTOHs) were separated by gas chromatography and detected by chemical ionization mass spectrometry (GC/CI-MS). Full-scan spectra were collected in both positive and negative chemical ionization (PCI and NCI, respectively) mode to determine retention time windows and fragmentation patterns. In selected ion monitoring (SIM) mode, instrumental detection limits ranged from 0.2 to 20 pg for individual analytes, depending on ionization mode. PCI mode was preferred for routine analysis because of the simple mass spectra produced, typified by the presence of a major molecular ion [M + H]+. High-volume air samplers collected gaseous and particle-bound fluoroorganics on composite media consisting of XAD-2, polyurethane foam (PUF), and quartz-fiber filters. The combined collection efficiency for individual analytes was 87 to 136% in breakthrough experiments. Application of the method to the analysis of ambient air from urban and rural sites confirmed the presence of six novel fluorinated atmospheric contaminants at picogram per meter3 concentrations. Low concentrations of fluoroorganics were consistently detected in blanks (<4 pg m(-3)); however, this did not prevent confirmation or quantification of environmental concentrations.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Biotransformation of polyfluoroalkyl precursors contributes in part to the perfluoroalkyl carboxylates and sulfonates detected in the global environment and biota. Robust sample preparation and sensitive analytical techniques for maximum analyte recovery are essential to identify and to quantify biotransformation products often present at low levels in environmental matrices and experimental systems. This critical review covers current sample-preparation and analytical methods, including extraction, concentration, clean-up and derivatization, mass spectrometry coupled to gas or liquid chromatography, and radioisotope labeling and tracking techniques. We also critically review methodologies for molecular structural elucidation and in-silico prediction of potential transformation products. We describe current knowledge gaps and challenges in studying novel alternative polyfluoroalkyl substances. We discuss future trends on utilizing advanced analytical techniques.
    TrAC Trends in Analytical Chemistry 01/2015; DOI:10.1016/j.trac.2014.11.017 · 6.61 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The usefulness of comprehensive two-dimensional gas chromatography (GC×GC) was demonstrated for the selective separation of fluorinated compounds from organic mixtures, such as kerosene/perfluorokerosene mixtures, pyrolysis products derived from polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture and poly[2-(perfluorohexyl)ethyl acrylate]. Perfluorocarbons were completely separated from hydrocarbons in the two-dimensional chromatogram. Fluorohydrocarbons in the pyrolysis products of polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture were selectively isolated from their hydrocarbon counterparts and regularly arranged according to their chain length and fluorine content in the two-dimensional chromatogram. A reliable structural analysis of the fluorohydrocarbons was achieved by combining effective GC×GC positional information with accurate mass spectral data obtained by high-resolution time-of-flight mass spectrometry (HRTOF-MS). 2-(Perfluorohexyl)ethyl acrylate monomer, dimer, and trimer as well as 2-(perfluorohexyl)ethyl alcohol in poly[2-(perfluorohexyl)ethyl acrylate] pyrolysis products were detected in the bottommost part of the two-dimensional chromatogram with separation from hydrocarbons possessing terminal structure information about the polymer, such as α-methylstyrene. Pyrolysis-GC×GC/HRTOF-MS appeared particularly suitable for the characterization of fluorinated polymer microstructures, such as monomer sequences and terminal groups. Copyright © 2014 Elsevier B.V. All rights reserved.
    Journal of Chromatography A 11/2014; 1374. DOI:10.1016/j.chroma.2014.11.062 · 4.26 Impact Factor