Imaging how attention modulates pain in humans using functional MRI.

Oxford University Department of Clinical Neurology, Centre for Functional Magnetic Resonance Imaging of the Brain, John Radcliffe Hospital, Headington, Oxford, UK.
Brain (Impact Factor: 10.23). 03/2002; 125(Pt 2):310-9.
Source: PubMed

ABSTRACT Current clinical and experimental literature strongly supports the phenomenon of reduced pain perception whilst attention is distracted away from noxious stimuli. This study used functional MRI to elucidate the underlying neural systems and mechanisms involved. An analogue of the Stroop task, the counting Stroop, was used as a cognitive distraction task whilst subjects received intermittent painful thermal stimuli. Pain intensity scores were significantly reduced when subjects took part in the more cognitively demanding interference task of the counting Stroop than in the less demanding neutral task. When subjects were distracted during painful stimulation, brain areas associated with the affective division of the anterior cingulate cortex (ACC) and orbitofrontal regions showed increased activation. In contrast, many areas of the pain matrix (i.e. thalamus, insula, cognitive division of the ACC) displayed reduced activation, supporting the behavioural results of reduced pain perception.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about the effect of migraine on neural cognitive networks. However, cognitive dysfunction is increasingly being recognized as a comorbidity of chronic pain. Pain appears to affect cognitive ability and the function of cognitive networks over time, and decrements in cognitive function can exacerbate affective and sensory components of pain. We investigated differences in cognitive processing and pain-cognition interactions between 14 migraine patients and 14 matched healthy controls using an fMRI block-design with two levels of task difficulty and concurrent heat (painful and not painful) stimuli. Across groups, cognitive networks were recruited in response to a difficult cognitive task, and a pain-task interaction was found in the right (contralateral to pain stimulus) posterior insula (pINS), such that activity was modulated by decreasing the thermal pain stimulus or by engaging the difficult cognitive task. Migraine patients had less task-related deactivation within the left dorsolateral prefrontal cortex (DLPFC) and left dorsal anterior midcingulate cortex (aMCC) compared to controls. These regions have been reported to have decreased cortical thickness and cognitive-related deactivation within other pain populations, and are also associated with pain regulation, suggesting the current findings may reflect altered cognitive function and top-down regulation of pain. During pain conditions, patients had decreased task-related activity, but more widespread task-related reductions in pain-related activity, compared to controls, suggesting cognitive resources may be diverted from task-related to pain-reduction-related processes in migraine. Overall, these findings suggest that migraine is associated with altered cognitive-related neural activity, which may reflect altered pain regulatory processes as well as broader functional restructuring.
    NeuroImage: Clinical. 01/2015; 45.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroimaging studies with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have delineated a human pain network in vivo. Despite the recognition of cerebral structures engaged in pain transmission, the cerebral mechanisms involved in pain modulation are still not well understood. Here, we investigated healthy volunteers using fMRI during experimental heat pain and distraction induced by a visual incongruent color-word Stroop task. A factorial design permitted categorical and covariation analysis of four conditions, namely innocuous and noxious heat; with and without distraction. Pain without distraction evoked an activation pattern similar to that observed in previous neuroimaging pain studies. Distraction was associated with a significant reduction of the visual analogue scale (VAS) ratings for pain intensity and unpleasantness and a reduction of pain-related activation in multiple brain areas, particularly in the so-called ‘medial pain system’. Distraction significantly increased the activation of the cingulo-frontal cortex including the orbitofrontal and perigenual anterior cingulate cortex (ACC), as well as the periaquaeductal gray (PAG) and the posterior thalamus. Covariation analysis revealed functional interaction between these structures during pain stimulation and distraction, but not during pain stimulation per se. According to our results, the cingulo-frontal cortex may exert top–down influences on the PAG and posterior thalamus to gate pain modulation during distraction.
    Pain 06/2004; 109(3):399-408. · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive self-regulation can strongly modulate pain and emotion. However, it is unclear whether self-regulation primarily influences primary nociceptive and affective processes or evaluative ones. In this study, participants engaged in self-regulation to increase or decrease pain while experiencing multiple levels of painful heat during functional magnetic resonance imaging (fMRI) imaging. Both heat intensity and self-regulation strongly influenced reported pain, but they did so via two distinct brain pathways. The effects of stimulus intensity were mediated by the neurologic pain signature (NPS), an a priori distributed brain network shown to predict physical pain with over 90% sensitivity and specificity across four studies. Self-regulation did not influence NPS responses; instead, its effects were mediated through functional connections between the nucleus accumbens and ventromedial prefrontal cortex. This pathway was unresponsive to noxious input, and has been broadly implicated in valuation, emotional appraisal, and functional outcomes in pain and other types of affective processes. These findings provide evidence that pain reports are associated with two dissociable functional systems: nociceptive/affective aspects mediated by the NPS, and evaluative/functional aspects mediated by a fronto-striatal system.
    PLoS biology. 01/2015; 13(1):e1002036.


1 Download
Available from