Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1.

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
Protein Science (Impact Factor: 2.74). 04/2002; 11(3):546-57. DOI: 10.1110/ps.37302
Source: PubMed

ABSTRACT Vpu is an 81-residue accessory protein of HIV-1. Because it is a membrane protein, it presents substantial technical challenges for the characterization of its structure and function, which are of considerable interest because the protein enhances the release of new virus particles from cells infected with HIV-1 and induces the intracellular degradation of the CD4 receptor protein. The Vpu-mediated enhancement of the virus release rate from HIV-1-infected cells is correlated with the expression of an ion channel activity associated with the transmembrane hydrophobic helical domain. Vpu-induced CD4 degradation and, to a lesser extent, enhancement of particle release are both dependent on the phosphorylation of two highly conserved serine residues in the cytoplasmic domain of Vpu. To define the minimal folding units of Vpu and to identify their activities, we prepared three truncated forms of Vpu and compared their structural and functional properties to those of full-length Vpu (residues 2-81). Vpu(2-37) encompasses the N-terminal transmembrane alpha-helix; Vpu(2-51) spans the N-terminal transmembrane helix and the first cytoplasmic alpha-helix; Vpu(28-81) includes the entire cytoplasmic domain containing the two C-terminal amphipathic alpha-helices without the transmembrane helix. Uniformly isotopically labeled samples of the polypeptides derived from Vpu were prepared by expression of fusion proteins in E. coli and were studied in the model membrane environments of lipid micelles by solution NMR spectroscopy and oriented lipid bilayers by solid-state NMR spectroscopy. The assignment of backbone resonances enabled the secondary structure of the constructs corresponding to the transmembrane and the cytoplasmic domains of Vpu to be defined in micelle samples by solution NMR spectroscopy. Solid-state NMR spectra of the polypeptides in oriented lipid bilayers demonstrated that the topology of the domains is retained in the truncated polypeptides. The biological activities of the constructs of Vpu were evaluated. The ion channel activity is confined to the transmembrane alpha-helix. The C-terminal alpha-helices modulate or promote the oligomerization of Vpu in the membrane and stabilize the conductive state of the channel, in addition to their involvement in CD4 degradation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The role of histidine in channel-forming transmembrane (TM) helices was investigated by comparing the TM helices from Virus protein 'u' (Vpu) and the M2 proton channel. Both proteins are members of the viroporin family of small membrane proteins that exhibit ion channel activity, and have a single TM helix that is capable of forming oligomers. The TM helices from both proteins have a conserved tryptophan towards the C-terminus. Previously, alanine 18 of Vpu was mutated to histidine in order to artificially introduce the same HXXXW motif that is central to the proton channel activity of M2. Interestingly, the mutated Vpu TM resulted in an increase in helix tilt angle of 11° in lipid bilayers compared to the wild-type Vpu TM. Here, we find the reverse, when histidine 37 of the HXXXW motif in M2 was mutated to alanine, it decreased the helix tilt by 10° from that of wild-type M2. The tilt change is independent of both the helix length and the presence of tryptophan. In addition, compared to wild-type M2, the H37A mutant displayed lowered sensitivity to proton concentration. We also found that the solvent accessibility of histidine-containing M2 is greater than without histidine. This suggests that the TM helix may increase the solvent exposure by changing its tilt angle in order to accommodate a polar/charged residue within the hydrophobic membrane region. The comparative results of M2, Vpu and their mutants demonstrated the significance of histidine in a transmembrane helix and the remarkable plasticity of the function and structure of ion channels stemming from changes at a single amino acid site.
    Molecular Membrane Biology 10/2013; · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to well study the internal body performance for transmission-mode GaAs photocathode of different varied doping structures, two GaAs photocathodes of exponential doping structure and gradient doping structure were designed respectively. Because surface photovoltage spectrum has close relation with the internal properties of GaAs photocathodes, the connection between surface photovoltage and internal electronic field was well discussed through deduction and calculation. The difference of two structures and the value of internal electronic energy were exactly calculated and verified by experiments. The internal band bending energy could form an internal electronic field with the same direction, which could help the photo-excited electrons to move toward surface barrier layer. This research shows a better method to well study the varied doping structures for GaAs photocathode materials and will help to improve the growth structure for transmission-mode GaAs photocathode module in the future.
    Optics Communications 01/2011; 284(19):4520-4524. · 1.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human immunodeficiency virus type I (HIV-1) Vpu protein is 81 residues long and has two cytoplasmic and one transmembrane (TM) helical domains. The TM domain oligomerizes to form a monovalent cation selective ion channel and facilitates viral release from host cells. Exactly how many TM domains oligomerize to form the pore is still not understood, with experimental studies indicating the existence of a variety of oligomerization states. In this study, molecular dynamics (MD) simulations were performed to investigate the propensity of the Vpu TM domain to exist in tetrameric, pentameric, and hexameric forms. Starting with an idealized α-helical representation of the TM domain, a thorough search for the possible orientations of the monomer units within each oligomeric form was carried out using replica-exchange MD simulations in an implicit membrane environment. Extensive simulations in a fully hydrated lipid bilayer environment on representative structures obtained from the above approach showed the pentamer to be the most stable oligomeric state, with interhelical van der Waals interactions being critical for stability of the pentamer. Atomic details of the factors responsible for stable pentamer structures are presented. The structural features of the pentamer models are consistent with existing experimental information on the ion channel activity, existence of a kink around the Ile17, and the location of tetherin binding residues. Ser23 is proposed to play an important role in ion channel activity of Vpu and possibly in virus propagation.
    PLoS ONE 01/2013; 8(11):e79779. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014