Article

Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons.

Department of Internal Medicine and Psychiatry, and Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2002; 99(4):2338-43. DOI: 10.1073/pnas.032678399
Source: PubMed

ABSTRACT Acidic extracellular solution activates transient H(+)-gated currents in dorsal root ganglion (DRG) neurons. The biophysical properties of three degenerin/epithelial sodium (DEG/ENaC) channel subunits (BNC1, ASIC, and DRASIC), and their expression in DRG, suggest that they might underlie these H(+)-gated currents and function as sensory transducers. However, it is uncertain which of these DEG/ENaC subunits generate the currents, and whether they function as homomultimers or heteromultimers. We found that the biophysical properties of transient H(+)-gated currents from medium to large mouse DRG neurons differed from BNC1, ASIC, or DRASIC expressed individually, but were reproduced by coexpression of the subunits together. To test the contribution of each subunit, we studied DRG from three strains of mice, each bearing a targeted disruption of BNC1, ASIC, or DRASIC. Deletion of any one subunit did not abolish H(+)-gated currents, but altered currents in a manner consistent with heteromultimerization of the two remaining subunits. These data indicate that combinations of two or more DEG/ENaC subunits coassemble as heteromultimers to generate transient H(+)-gated currents in mouse DRG neurons.

0 Bookmarks
 · 
85 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acid-sensing ion channels (ASICs) are key receptors for extracellular protons. These neuronal nonvoltage-gated Na(+) channels are involved in learning, the expression of fear, neurodegeneration after ischemia, and pain sensation. We have applied a systematic approach to identify potential pH sensors in ASIC1a and to elucidate the mechanisms by which pH variations govern ASIC gating. We first calculated the pK(a) value of all extracellular His, Glu, and Asp residues using a Poisson-Boltzmann continuum approach, based on the ASIC three-dimensional structure, to identify candidate pH-sensing residues. The role of these residues was then assessed by site-directed mutagenesis and chemical modification, combined with functional analysis. The localization of putative pH-sensing residues suggests that pH changes control ASIC gating by protonation/deprotonation of many residues per subunit in different channel domains. Analysis of the function of residues in the palm domain close to the central vertical axis of the channel allowed for prediction of conformational changes of this region during gating. Our study provides a basis for the intrinsic ASIC pH dependence and describes an approach that can also be applied to the investigation of the mechanisms of the pH dependence of other proteins.
    Journal of Biological Chemistry 03/2010; 285(21):16315-29. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injury (TBI) is a common cause of morbidity and mortality in people of all ages. Following the acute mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary factors that contribute to TBI, we studied a lateral fluid percussion injury (FPI) model in mice. Following FPI, the brain cortex became acidic, consistent with data from humans following brain trauma. Administering HCO3 (-) after FPI prevented the acidosis and reduced the extent of neurodegeneration. Because acidosis can activate acid sensing ion channels (ASICs), we also studied ASIC1a(-/-) mice and found reduced neurodegeneration after FPI. Both HCO3 (-) administration and loss of ASIC1a also reduced functional deficits caused by FPI. These results suggest that FPI induces cerebral acidosis that activates ASIC channels and contributes to secondary injury in TBI. They also suggest a therapeutic strategy to attenuate the adverse consequences of TBI.
    PLoS ONE 01/2013; 8(8):e72379. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Key point  A subset of neurons of the nucleus of the solitary tract (nucleus tractus solitarius, NTS) show a response to changes in pH within the physiological range (7.4 to 7.0) that is mediated by acid sensing ion channels (ASICs).  These 'responder neurons' appear to cluster dorsally in the NTS.  ASIC1 and ASIC2 transcripts are expressed in the NTS.  NTS neurons projecting to the ventral respiratory column show ASIC-mediated responses to mild pH challenges and may modulate the respiratory response to .  Injection of the ASIC inhibitor amiloride into the NTS transiently depresses breathing frequency in hypercapnic anaesthetized rats.
    The Journal of Physiology 08/2012; 590(Pt 19):4761-75. · 4.38 Impact Factor

Full-text

View
0 Downloads
Available from