Article

An NMR approach to structural proteomics.

Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada M5G 1L7.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2002; 99(4):1825-30. DOI: 10.1073/pnas.042684599
Source: PubMed

ABSTRACT The influx of genomic sequence information has led to the concept of structural proteomics, the determination of protein structures on a genome-wide scale. Here we describe an approach to structural proteomics of small proteins using NMR spectroscopy. Over 500 small proteins from several organisms were cloned, expressed, purified, and evaluated by NMR. Although there was variability among proteomes, overall 20% of these proteins were found to be readily amenable to NMR structure determination. NMR sample preparation was centralized in one facility, and a distributive approach was used for NMR data collection and analysis. Twelve structures are reported here as part of this approach, which allowed us to infer putative functions for several conserved hypothetical proteins.

0 Followers
 · 
260 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 18.5 kDa isoform of myelin basic protein (MBP) is a major component of the myelin sheath in the central nervous system of higher vertebrates, and a member of a larger family of proteins with a multiplicity of forms and post-translational modifications (PTMs). The 18.5 kDa protein is the exemplar of the family, being most abundant in adult myelin, and thus the most-studied. It is peripherally membrane-associated, but has generally been investigated in isolated form. MBP is an ‘intrinsically unstructured’ protein with a high proportion (∼75%) of random coil, but postulated to have core elements of β-sheet and α-helix. We review here the properties of the MBP family, especially of the 18.5 kDa isoform, and discuss how its three-dimensional (3D) structure may be resolved by direct techniques available to us, viz., X-ray and electron crystallography, and solution and solid-state NMR spectrometry. In particular, we emphasise that creating an appropriate environment in which the protein can adopt a physiologically relevant fold is crucial to such endeavours. By solving the 3D structure of 18.5 kDa MBP and the effects of PTMs, we will attain a better understanding of myelin architecture, and of the molecular mechanisms that transpire in demyelinating diseases such as multiple sclerosis.
    Micron 05/2004; DOI:10.1016/S0968-4328(04)00096-4 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MTH1880 is a hypothetical protein derived from Methanobacterium thermoautotrophicum, thermophilic methanogen. The solution structure determined by NMR spectroscopy showed that it has a novel -fold with a highly acidic ligand binding pocket. Since MTH1880 maintains its ultra-stable structural characteristics at both high temperature and pressure, it has been considered as an excellent model for studying protein folding. To initiate the structural and folding study of MTH1880 in proving its unusual stability, we performed the site directed mutagenesis and biochemical analysis of MTH1880 mutants. Data from circular dichroism and NMR spectroscopy suggest that the point mutations perturbed the structural stability of protein even though the secondary structure is retained. This study will provide the useful information in understanding the role of participating residues during folding-unfolding process and our result will be used in designing further folding experiments for hyper-thermopile proteins like MTH1880.
    Bulletin- Korean Chemical Society 12/2010; 31(12). DOI:10.5012/bkcs.2010.31.12.3521 · 0.84 Impact Factor

Full-text (2 Sources)

Download
94 Downloads
Available from
Jun 10, 2014