Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients

Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, 2500 University Drive, NW Calgary, Alberta, Canada T2N 1N4.
Journal of Biomechanics (Impact Factor: 2.75). 04/2002; 35(3):303-9. DOI: 10.1016/S0021-9290(01)00217-2
Source: PubMed


Forces applied to tendon during movement cause cellular deformation, as well as fluid movement. The goal of this study was to test the hypothesis that rabbit tendon fibroblasts detect and respond to fluid-induced shear stress. Cells were isolated from the paratenon of the rabbit Achilles tendon and then subjected to fluid flow at 1 dyn/cm(2) for 6h in a specially designed multi-slide flow device. The application of fluid flow led to an increased expression of the collagenase-1 (MMP-1), stromelysin-1 (MMP-3), cyclooxygenase II (COX-2) and interleukin-1beta (IL-1beta) genes. The release of proMMP-3 into the medium exhibited a dose-response with the level of fluid shear stress. However, not all cells aligned in the direction of flow. In other experiments, the same cells were incubated with the calcium-reactive dye FURA-2 AM, then subjected to laminar fluid flow in a parallel plate flow chamber. The cells did not significantly increase intracellular calcium concentration when exposed to fluid shear stress levels of up to 25 dyn/cm(2). These results show that gene expression in rabbit tendon cells is sensitive to fluid flow, but that signal transduction is not dependent on intracellular calcium transients. The upregulation of the MMP-1, MMP-3 and COX-2 genes shows that fluid flow could be an important mechanical stimulus for tendon remodelling or injury.

Download full-text


Available from: Albert J Banes,
  • Source
    • "This population proliferates and increases overall synthesis of extracellular matrix proteins in tendon in response to exercise (Zhang et al. 2010). Tendon cells' in vitro responses to mechanical stimuli have been studied using silicone substrates applying simultaneous substrate deformation and fluid flow (Thompson et al. 2011), with low strain magnitude effects promoting anabolic activity, that is secretion of extracellular matrix proteins, and higher magnitudes more catabolic, that is, secretion of enzymes responsible for breaking down extracellular matrix proteins (Yang and Im 2005; Archambault et al. 2002; Yang et al. 2004). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mathematical and computational modeling is in demand to help address current challenges in mechanobiology of musculoskeletal tissues. In particular for tendon, the high clinical importance of the tissue, the huge mechanical demands placed on it and its ability to adapt to these demands, require coupled, multiscale models incorporating complex geometrical and microstructural information as well as time-based descriptions of cellular activity and response.This review introduces the information sources required to develop such multiscale models. It covers tissue structure and biomechanics, cell biomechanics, the current understanding of tendon's ability in health and disease to update its properties and structure and the few already existing multiscale mechanobiological models of the tissue. Finally, a sketch is provided of what such models could achieve ideally, pointing out where experimental data and knowledge are still missing.
    Bulletin of Mathematical Biology 05/2013; 75(8). DOI:10.1007/s11538-013-9850-5 · 1.39 Impact Factor
  • Source
    • "In vitro, the type and axis of loading of bioscaffolds affect the cellular response. Compression loading leads to the formation of more cartilaginous tissue, whereas shear stress produces increased matrix metalloproteinases (MMP-1 and 3) in rabbit tendon fibroblasts, which results in matrix disruption [83, 84]. Repetitive loading, at higher construct strains, results in production of PGE2 and BMP2, leading to differentiation into nontendon lineages [85, 86]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tendon injuries are a common cause of morbidity and a significant health burden on society. Tendons are structural tissues connecting muscle to bone and are prone to tearing and tendinopathy, an overuse or degenerative condition that is characterized by failed healing and cellular depletion. Current treatments, for tendon tear are conservative, surgical repair or surgical scaffold reconstruction. Tendinopathy is treated by exercises, injection therapies, shock wave treatments or surgical tendon debridement. However, tendons usually heal with fibrosis and scar tissue, which has suboptimal tensile strength and is prone to reinjury, resulting in lifestyle changes with activity restriction. Preclinical studies show that cell therapies have the potential to regenerate rather than repair tendon tissue, a process termed tenogenesis. A number of different cell lines, with varying degrees of differentiation, have being evaluated including stem cells, tendon derived cells and dermal fibroblasts. Even though cellular therapies offer some potential in treating tendon disorders, there have been few published clinical trials to determine the ideal cell source, the number of cells to administer, or the optimal bioscaffold for clinical use.
    01/2012; 2012(318):637836. DOI:10.1155/2012/637836
  • Source
    • "BAEC grown on gelatin-coated slides were subjected to static conditions, or physiological levels of shear stress (15 dynes/cm 2 ) for 10 min, 3 hours, or 6 hours, using a Flexcell® Streamer® shear stress device (Flexcell International Corp.) as previously described (Archambault et al., 2002). This device consists of a parallel multi-slide flow chamber connected to a peristaltic pump (MasterFlex® L/S, Cole-Parmer Instrument Company) (Figure 1). "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study directly measured the relative protein levels in bovine aortic endothelial cells (BAEC) that were cultured for two weeks in normal (5 mM, NG) or high (22 mM, HG) glucose and then were subjected to laminar shear stress at 0 or 15 dynes/cm2. Membrane preparationswere labeled with one of the four isobaric tagging reagents (iTRAQ), followed by LC-MS/MS analysis. The results showed that HG and/or shear stress induced alterations in various membrane associated proteins involving many signaling pathways. While shear stress induced an increase in heat shock proteins and protein ubiquitination, which remained enhanced in HG, the effects of shear stress on the mechanosensing and protein phosphorylation pathways were altered by HG. These results were validated by Western blot analysis, suggesting that HG importantly modulates shear stress-mediated endothelial function.
    Journal of Proteomics & Bioinformatics 10/2009; 02(10). DOI:10.4172/jpb.1000104
Show more