Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients.

Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, 2500 University Drive, NW Calgary, Alberta, Canada T2N 1N4.
Journal of Biomechanics (Impact Factor: 2.5). 04/2002; 35(3):303-9. DOI: 10.1016/S0021-9290(01)00217-2
Source: PubMed

ABSTRACT Forces applied to tendon during movement cause cellular deformation, as well as fluid movement. The goal of this study was to test the hypothesis that rabbit tendon fibroblasts detect and respond to fluid-induced shear stress. Cells were isolated from the paratenon of the rabbit Achilles tendon and then subjected to fluid flow at 1 dyn/cm(2) for 6h in a specially designed multi-slide flow device. The application of fluid flow led to an increased expression of the collagenase-1 (MMP-1), stromelysin-1 (MMP-3), cyclooxygenase II (COX-2) and interleukin-1beta (IL-1beta) genes. The release of proMMP-3 into the medium exhibited a dose-response with the level of fluid shear stress. However, not all cells aligned in the direction of flow. In other experiments, the same cells were incubated with the calcium-reactive dye FURA-2 AM, then subjected to laminar fluid flow in a parallel plate flow chamber. The cells did not significantly increase intracellular calcium concentration when exposed to fluid shear stress levels of up to 25 dyn/cm(2). These results show that gene expression in rabbit tendon cells is sensitive to fluid flow, but that signal transduction is not dependent on intracellular calcium transients. The upregulation of the MMP-1, MMP-3 and COX-2 genes shows that fluid flow could be an important mechanical stimulus for tendon remodelling or injury.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The purpose of this study was to investigate tenocyte mechanobiology after sudden-detraining and to examine the hypothesis that repeated peri-patellar injections of hyaluronic acid (HA) on detrained patellar tendon (PT) may reduce and limit detrained-associated damage in tenoctyes. Twenty-four male Sprague-Dawley rats were divided into 3 groups: Untrained, Trained and Detrained. In the Detrained rats, the left tendon was untreated while the right tendon received repeated peri-patellar injections of either HA or saline (NaCl). Tenocyte morphology, metabolism and synthesis of C-terminal-Propeptide of type I collagen, collagen-III, fibronectin, aggrecan, tenascin-c, interleukin-1β, matrix-metalloproteinase-1 and-3 were evaluated after 1, 3, 7 and 10 days of culture. Transmission-Electronic-Microscopy showed a significant increase in mitochondria and rough endoplasmic reticulum in cultured tenocytes from Detrained-HA respect to those from Detrained-NaCl. Additionally, Detrained-HA cultures showed a significantly higher proliferation rate and viability, and increased synthesis of C-terminal-Propeptide of type I collagen, fibronectin, aggrecan, tenascin-c and matrix-metalloproteinase-3 with respect to Detrained-NaCl ones, whereas synthesis of matrix-metalloproteinase-1 and interleukin-1β was decreased. Our study demonstrates that discontinuing training activity in the short-term alters tenocyte synthetic and metabolic activity and that repeated peri-patellar infiltrations of HA during detraining allow the maintenance of tenocyte anabolic activity.
    Connective Tissue Research 10/2014; 56(1):1-31. DOI:10.3109/03008207.2014.979166 · 1.98 Impact Factor
  • Source

Full-text (2 Sources)

Available from
May 20, 2014