Article

All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction.

Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA.
Journal of Cell Science (Impact Factor: 5.33). 03/2002; 115(Pt 4):679-88.
Source: PubMed

ABSTRACT The tumor necrosis factor (TNF) receptor associated factors (TRAFs) have emerged as the major signal transducers for the TNF receptor superfamily and the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily. TRAFs collectively play important functions in both adaptive and innate immunity. Recent functional and structural studies have revealed the individuality of each of the mammalian TRAFs and advanced our understanding of the underlying molecular mechanisms. Here, we examine this functional divergence among TRAFs from a perspective of both upstream and downstream TRAF signal transduction pathways and of signaling-dependent regulation of TRAF trafficking. We raise additional questions and propose hypotheses regarding the molecular basis of TRAF signaling specificity.

0 Bookmarks
 · 
99 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is a crucial docking molecule for TNFR superfamily and Interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily. As an adaptor protein in pathogen-induced signaling cascades, TRAF6 modulates both adaptive- and innate-immunity. In order to understand the immune responses of teleost TRAF6, Oplegnathus fasciatus TRAF6-like gene (OfTRAF6) was identified and characterized. Genomic length of OfTRAF6 (4 kb), obtained by means of a genomic BAC library, spanned seven exons which represented a putative coding sequence of 1716 bp and encoded 571 amino acids (aa) with an estimated molecular weight of 64 kDa. This putative protein demonstrated the classical tetra-domain architecture composed of a zinc finger RING-type profile, two zinc finger TRAF-type profiles, a coiled-coil region and a MATH domain. While the sequence similarity with human TRAF6 was 66.5%, OfTRAF6 shared a higher overall similarity with teleost homologs (∼75–92%). Phylogeny of TRAF-family was examined and TRAF6-subfamily appeared to be the precursor of other subfamilies. In addition, the clustering pattern confirmed that OfTRAF6 is a novel member of TRAF6subfamily. Based on comparative genomic analysis, we found that vertebrate TRAF6 exhibits two distinct structures in teleost and tetrapod lineages. An intron-loss event has probably occurred in TRAF6 gene during the evolution of tetrapods from teleosts. Inspection of putative OfTRAF6 promoter revealed the presence of several immune responsive transcription factor binding sites. Real-time qPCR assay detected OfTRAF6 transcripts in eleven juvenile fish tissues with higher levels in peripheral blood cells followed by liver. Putative role of OfTRAF6 in response to flagellin, LPS, poly I:C, pathogenic bacteria (Edwardsiella tarda and Streptococcus iniae) and rock bream iridovirus (RBIV) was profiled in different tissues and OfTRAF6 revealed up-regulated transcript levels. Altogether, these findings implicate that OfTRAF6 is not only involved in flagellin-induced signaling cascade, but also contributes to the antibacterial- and antiviral-responses.
    Fish &amp Shellfish Immunology 01/2015; 42:66-78. · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increasing exposure to nanoparticles (NPs) has raised concerns regarding their health and safety profiles in humans and animals, especially in developing organisms, which may display increased sensitivity to NP toxicity. The present study examined the effects of gestational exposure to carbon black NP (CB-NP) on the development of the offspring immune system. Pregnant mice were exposed to CB-NP (95μg/kg body weight) by intranasal instillation on gestational days 9 and 15. The thymus and spleen were collected from their offspring mice on postnatal day (PND) 1, 3 and 5. Thymocyte and splenocyte phenotypes were examined by determining the expression of cell-surface molecules using flow cytometry. Gene expression in the thymus and spleen was examined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Prenatal exposure to CB-NP increased total thymocytes and their immunophenotypes (CD4(-)CD8(-) and CD4(+)CD8(+) cells). It also induced an increase in total lymphocytes, and CD4(-)CD8(-), particularly CD3(-)B220(-)cells, at PND 5 in the spleen of newborn male offspring, reflecting the stimulation of immature splenocytes. Furthermore, mRNA expression of genes related to the induction of peripheral tolerance (i.e. thymic Traf6) was upregulated. These data suggest that respiratory exposure to CB-NP during middle and late gestation may have allergic or inflammatory effects in male offspring, and may provide initial information on the potential developmental immunotoxicity of nanoparticles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
    Toxicology 11/2014; 327C:53-61. · 3.75 Impact Factor

Preview

Download
0 Downloads
Available from