An investigation of the operating characteristics of two PTW diamond detectors in photon and electron beams.

Physics Laboratory, Istituto Superiore di Sanità, and INFN, Rome, Italy.
Medical Physics (Impact Factor: 2.91). 03/2002; 29(2):248-54. DOI: 10.1118/1.1446101
Source: PubMed

ABSTRACT The dosimetric properties of two PTW Riga diamond detectors type 60003 were studied in high-energy photon and electron therapy beam. Properties under study were current-voltage characteristic, polarization effect, time stability of response, dose response, dose-rate dependence, temperature stability, and beam quality dependence of the sensitivity factor. Differences were shown between the two detectors for most of the previous properties. Also, the observed behavior was, to some extent, different from what was reported in the PTW technical specifications. The necessity to characterize each diamond detector individually was addressed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements.
    Medical physics. 07/2014; 41(7):072103.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detector, because it has to measure radiation coming from all the directions of the space. It is also convenient that detectors are inexpensive and robust, especially to perform in vivo measurements. The purpose of this work is to introduce a new detector for measuring megavoltage photon beams and to assess its performance to measure relative dose in EBRT.Methods: The detector studied in this work was designed as a spherical photodiode (1.8 mm in diameter). The change in response of the spherical diodes is measured regarding the angle of incidence, cumulated irradiation, and instantaneous dose rate (or dose per pulse). Additionally, total scatter factors for large and small fields (between 1 × 1 cm(2) and 20 × 20 cm(2)) are evaluated and compared with the results obtained from some commercially available ionization chambers and planar diodes. Additionally, the over-response to low energy scattered photons in large fields is investigated using a shielding layer.Results: The spherical diode studied in this work produces a high signal (150 nC∕Gy for photons of nominal energy of 15 MV and 160 for 6 MV, after 12 kGy) and its angular dependence is lower than that of planar diodes: less than 5% between maximum and minimum in all directions, and 2% around one of the axis. It also has a moderated variation with accumulated dose (about 1.5%∕kGy for 15 MV photons and 0.7%∕kGy for 6 MV, after 12 kGy) and a low variation with dose per pulse (±0.4%), and its behavior is similar to commercial diodes in total scatter factor measurements.Conclusions: The measurements of relative dose using the spherical diode described in this work show its feasibility for the dosimetry of megavoltage photon beams. A particularly important feature is its good angular response in the MV range. They would be good candidates for in vivo dosimetry, and quality assurance of VMAT and tomotherapy, and other modalities with beams irradiating from multiple orientations, such as Cyberknife and ViewRay, with minor modifications.
    Medical Physics 01/2014; 41(1):012102. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine detector-specific output correction factors,[Formula: see text], in 6 MV small photon beams for air and liquid ionization chambers, silicon diodes, and diamond detectors from two manufacturers. Field output factors, defined according to the international formalism published byAlfonso et al. [Med. Phys. 35, 5179-5186 (2008)], relate the dosimetry of small photon beams to that of the machine-specific reference field; they include a correction to measured ratios of detector readings, conventionally used as output factors in broad beams. Output correction factors were calculated with the PENELOPE Monte Carlo (MC) system with a statistical uncertainty (type-A) of 0.15% or lower. The geometries of the detectors were coded using blueprints provided by the manufacturers, and phase-space files for field sizes between 0.5 × 0.5 cm(2) and 10 × 10 cm(2) from a Varian Clinac iX 6 MV linac used as sources. The output correction factors were determined scoring the absorbed dose within a detector and to a small water volume in the absence of the detector, both at a depth of 10 cm, for each small field and for the reference beam of 10 × 10 cm(2). The Monte Carlo calculated output correction factors for the liquid ionization chamber and the diamond detector were within about ±1% of unity even for the smallest field sizes. Corrections were found to be significant for small air ionization chambers due to their cavity dimensions, as expected. The correction factors for silicon diodes varied with the detector type (shielded or unshielded), confirming the findings by other authors; different corrections for the detectors from the two manufacturers were obtained. The differences in the calculated factors for the various detectors were analyzed thoroughly and whenever possible the results were compared to published data, often calculated for different accelerators and using the EGSnrc MC system. The differences were used to estimate a type-B uncertainty for the correction factors. Together with the type-A uncertainty from the Monte Carlo calculations, an estimation of the combined standard uncertainty was made, assigned to the mean correction factors from various estimates. The present work provides a consistent and specific set of data for the output correction factors of a broad set of detectors in a Varian Clinac iX 6 MV accelerator and contributes to improving the understanding of the physics of small photon beams. The correction factors cannot in general be neglected for any detector and, as expected, their magnitude increases with decreasing field size. Due to the reduced number of clinical accelerator types currently available, it is suggested that detector output correction factors be given specifically for linac models and field sizes, rather than for a beam quality specifier that necessarily varies with the accelerator type and field size due to the different electron spot dimensions and photon collimation systems used by each accelerator model.
    Medical Physics 04/2014; 41(4):041711. · 2.91 Impact Factor