An investigation of the operating characteristics of two PTW diamond detectors in photon and electron beams

University of Florence, Florens, Tuscany, Italy
Medical Physics (Impact Factor: 3.01). 03/2002; 29(2):248-54. DOI: 10.1118/1.1446101
Source: PubMed

ABSTRACT The dosimetric properties of two PTW Riga diamond detectors type 60003 were studied in high-energy photon and electron therapy beam. Properties under study were current-voltage characteristic, polarization effect, time stability of response, dose response, dose-rate dependence, temperature stability, and beam quality dependence of the sensitivity factor. Differences were shown between the two detectors for most of the previous properties. Also, the observed behavior was, to some extent, different from what was reported in the PTW technical specifications. The necessity to characterize each diamond detector individually was addressed.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent developments of new therapy techniques using small photon beams, such as stereotactic radiotherapy, require suitable detectors to determine the delivered dose with a high accuracy. The dosimeter has to be as close as possible to tissue equivalence and to exhibit a small detection volume compared to the size of the irradiation field, because of the lack of lateral electronic equilibrium in small beam. Characteristics of single crystal diamond (tissue equivalent material Z = 6, high density) make it an ideal candidate to fulfil most of small beam dosimetry requirements. A commercially available Element Six electronic grade synthetic diamond was used to develop a single crystal diamond dosimeter (SCDDo) with a small detection volume (0.165 mm(3)). Long term stability was studied by irradiating the SCDDo in a (60)Co beam over 14 h. A good stability (deviation less than ± 0.1%) was observed. Repeatability, dose linearity, dose rate dependence and energy dependence were studied in a 10 × 10 cm(2) beam produced by a Varian Clinac 2100 C linear accelerator. SCDDo lateral dose profile, depth dose curve and output factor (OF) measurements were performed for small photon beams with a micro multileaf collimator m3 (BrainLab) attached to the linac. This study is focused on the comparison of SCDDo measurements to those obtained with different commercially available active detectors: an unshielded silicon diode (PTW 60017), a shielded silicon diode (Sun Nuclear EDGE), a PinPoint ionization chamber (PTW 31014) and two natural diamond detectors (PTW 60003). SCDDo presents an excellent spatial resolution for dose profile measurements, due to its small detection volume. Low energy dependence (variation of 1.2% between 6 and 18 MV photon beam) and low dose rate dependence of the SCDDo (variation of 1% between 0.53 and 2.64 Gy min(-1)) are obtained, explaining the good agreement between the SCDDo and the efficient unshielded diode (PTW 60017) in depth dose curve measurements. For field sizes ranging from 0.6 × 0.6 to 10 × 10 cm(2), OFs obtained with the SCDDo are between the OFs measured with the PinPoint ionization chamber and the Sun Nuclear EDGE diode that are known to respectively underestimate and overestimate OF values in small beam, due to the large detection volume of the chamber and the non-water equivalence of both detectors.
    Physics in Medicine and Biology 10/2013; 58(21):7647-7660. DOI:10.1088/0031-9155/58/21/7647 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents an implantable real-time dosimetric probe using near-tissue-equivalent GaN as a scintillator and an optical fiber for radioluminescence (RL) collection and transmission. Heavily-doped GaN was preferred because of enhanced light output with dominant near-band-edge UV emission and minimized yellow luminescence (YL) contribution. For encapsulating the small-volume GaN bulk at the end of the coupled fiber, a polymer cladding fiber was chosen and a core cavity was formed by a chemical-etching and tip-cleavage process. For testing the realized dosimetric probe, a probe-readout system was designed with UV-narrow-band selection and photodetection. Real-time measurements showed detected radiation pulses with fluctuations, but integrating the detected pulses exhibited a dose response curve steadily increasing, with less than 2% reproducibility errors between runs for a dose of more than 50 cGy. The GaN and fiber contributions to the averaged output signal were evaluated by different field size measurements. The fiber contribution was significant because of its much larger irradiated volume compared to that of GaN in the probe. On the other hand, the GaN contribution per volume was much larger than the fiber: 186 times for 6 MV photons and 89 times for 18 MV photons. The probe was also irradiated by receiving a 18 MeV 300 Gy electron beam dose. The GaN contribution was unchanged, while the fiber contribution was increased by 20%. This further demonstrates the need to subtract the fiber contribution for accurate measurements.
    Sensors and Actuators A Physical 04/2009; 151(1-151):29-34. DOI:10.1016/j.sna.2009.02.018 · 1.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This thesis details an investigation of the suitability of commercially-available single crystal and polycrystalline diamond films made via chemical vapor deposition (CVD) that were not studied previously for use in radiotherapy dosimetry. Novel sandwich-type detectors were designed and constructed to investigate the dosimetric response of diamond films under clinical conditions. Relatively inexpensive diamond films were obtained from three manufacturers: Diamonex, Diamond Materials GmbH and Element Six. Spectrophotometry, Raman spectroscopy and bulk conductivity studies were used to characterize these films and correlate crystalline quality with detector performance. Novel detectors were designed and constructed to investigate detectors under clinical conditions, including Perspex encapsulations and PCBs to minimize fluence perturbations. The dosimetric response of these diamond detectors was examined using a 6 MV beam from a Varian Clinac 600C linear accelerator. Diamond detectors were evaluated by measuring a number of response characteristics. Polycrystalline CVD diamond films from Diamonex (100, 200, 400-μm thicknesses) were considered unsuitable for dosimetric applications due to their lack of stability, low sensitivity, high leakage currents, high priming dose and dependence on dose rate. High-quality polycrystalline diamond films from Diamond Materials (100, 200, 400-μm thicknesses) displayed characteristics that varied with film thickness. A 100-μm film featured slow response dynamics and high priming doses. Thicker films featured suitable dosimetric characteristics, e.g. negligible leakage currents, low priming doses, fast response dynamics and good sensitivity with small sensitive volumes. Element Six single crystal CVD diamond films (500-μm thicknesses) with small sensitive volumes (0.39 mm³) exhibited suitable characteristics for dosimetry. These films showed negligible leakage currents (< 1.25 pA), low priming doses (1–10 Gy), quick response dynamics, high sensitivity (47–230 nC Gy⁻¹) and were weakly dependent on dose rate and directional dependence (±1%). A relatively inexpensive single crystal CVD diamond film from Element Six that exhibited high sensitivity (230 nC Gy⁻¹ at 0.5 V μm⁻¹), amongst other favourable characteristics, was selected for further analyses. An appropriate operating voltage was determined before further clinically relevant measurements could be conducted. This included how changes in an applied electric field affected detector response, and determined whether an optimal operating voltage could be realized within the parameters of conventional instrumentation used in radiation therapy. The results of this study indicated a preference towards using 62.5 V (at ~0.13 V μm⁻¹) out of a range of 30.8–248.0 V for temporal response as required for modulated beams due to its minimal rise time (2 s) and fall time (2 s) yet sufficient sensitivity (37 nC Gy⁻¹) and weak dependence on polarity (±1.5%). Investigations were then performed on the same diamond detector to evaluate its performance under more clinically relevant conditions. Repeatability experiments revealed a temporary loss in sensitivity due to charge detrapping effects following irradiation, which was modelled to make corrections that improved short-term precision. It was shown that this detector could statistically distinguish between dose values separated by a single Monitor Unit, which corresponded to 0.77 cGy. Dose rate dependence was observed when using low, fixed doses in contrast to using stabilized currents and higher doses. Depth dose measurements using this detector compared well with ion chambers and diode dosimeters. Comparisons of initial measurements with values in the literature indicate encouraging results for fields sizes < 4 x 4 cm², but further measurements and comparisons with Monte Carlo calculations are required. Using this detector to make off-axis measurements in the edge-on orientation reduced perturbation of the beam due to its sandwich configuration and thin 150 nm Ag contacts. This diamond detector was found to be suitable for routine dosimetry with conventional radiotherapy instrumentation with a materials cost of < NZ$200.