Restoration of wild-type conformation and activity of a temperature-sensitive mutant of p53 (p53(V272M)) by the cytoprotective aminothiol WR1065 in the esophageal cancer cell line TE-1.

Group of Molecular Carcinogenesis, International Agency for Research on Cancer, Lyon, France.
Molecular Carcinogenesis (Impact Factor: 4.77). 04/2002; 33(3):181-8.
Source: PubMed

ABSTRACT The aminothiol WR1065, the active metabolite of the cytoprotector amifostine, exerts its antimutagenic effects through free-radical scavenging and other unknown mechanisms. In an earlier report, we showed that WR1065 activates wild-type p53 in MCF-7 cells, leading to p53-dependent arrest in the G(1) phase of the cell cycle. To determine whether WR1065 activates p53 by modulating protein conformation, we analyzed its effects on p53 conformation and activity in the esophageal cancer cell line TE-1. This cell line contains a mutation in codon 272 of p53 (p53(V272M), with methionine instead of a valine), conferring temperature-sensitive properties to the p53 protein. At the nonpermissive temperature (37 degrees C), p53(V272M) adopts the mutant p53 conformation (nonreactive with the antibody PAb1620), does not bind specifically to DNA, and is not activated in response to DNA-damaging treatment. However, treatment with 0.5-4 mM WR1065 partially restored wild-type conformation at 37 degrees C, stimulated DNA binding activity, and increased the expression of p53 target genes WAF-1, GADD45, and MDM2, leading to cell-cycle arrest in G(1). These results suggest that WR1065 activates p53 through a mechanism distinct from DNA-damage signaling, which involves modulation of p53 protein conformation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The p53 gene is often mutated during cancer development. Frequency and functional consequences of these mutations vary in different tumor types. We analysed conformation and temperature dependency of 23 partially inactivating temperature-dependent (td) p53 mutants derived from various human tumors in yeast. We found considerable differences in transactivation capabilities and discriminative character of various p53 mutants. No correlations in transactivation rates and conformations of the td p53 proteins were detected. Amifostine-induced p53 reactivation occurred only in 13 of 23 td mutants, and this effect was temperature dependent and responsive element specific. The most of the p53 mutations (10/13) reactivated by amifostine were located in the part of the p53 gene coding for hydrophobic beta-sandwich structure of the DNA-binding domain.
    Oncogene 03/2008; 27(9):1243-52. DOI:10.1038/sj.onc.1210748 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We reported recently that roscovitine (ROSC), a selective cyclin-dependent kinase (CDK) inhibitor, arrests human MCF-7 breast cancer cells in G(2) phase of the cell cycle, and concomitantly induces apoptosis. Human MCF-7 breast cancer cells are known to express elevated levels of c-Ha-Ras protein. To achieve full biological activity, de novo synthesized c-Ha-Ras protein has to be farnesylated and after further processing it needs to be attached to the plasma membrane. Therefore, we decided to prove whether prevention of protein farnesylation would sensitize MCF-7 cells to the action of ROSC. MCF-7 cells were treated with 1-40 microM ROSC alone, or in combination with L-744,832, an inhibitor of farnesyl protein transferase (FTPase). To measure the impact on the proliferation of the cells, we used the CellTiterGlo viability assay and FACS analysis was employed to quantify the DNA-content of the single cells. The amount and phosphorylation status of relevant proteins after lysis of MCF-7 cells was assessed on Western blots using (phospho)-specific antibodies. The combined treatment with L-744,832 and ROSC for 24 h, markedly reduced the number of viable MCF-7 cells, primarily, by re-enforcing the cell cycle arrest. Interestingly, the potentiation of the ROSC-mediated inhibition of cell proliferation became evident during the 48 h post-incubation period in presence of the FPTase inhibitor. Inhibition of FPTase in ROSC-treated cells reduced the number of viable cells by approximately 30%. Evidently, the combined treatment sensitizes MCF-7 cells to the action of ROSC, thereby allowing to reduce the dose of the drug and to minimize side effects.
    Journal of Cellular Biochemistry 10/2007; 102(3):736-47. DOI:10.1002/jcb.21325 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Styrene is one of the most important monomers produced worldwide. IARC classified styrene as a possible carcinogen to humans (group 2B). Styrene-7,8-oxide (SO) is the main reactive metabolite of styrene, and it is found to be genotoxic in several in vitro test systems. Styrene and styrene-7,8-oxide (SO) toxicity to HepG2 cells was investigated by evaluating end-points such as heat shock proteins (Hsps), metallothioneins (MT), apoptosis-related proteins, accumulation of styrene within the cells and expression of two isoforms of cytochrome P450. The potential activity of styrene and styrene-7,8-oxide in modulating gene expression was also investigated. The results showed induction of Hsp70, metallothioneins, BclX(S/L) and c-myc expression and a decrease in Bax expression in HepG2 after treatments, confirming that these compounds activated protective mechanisms. Moreover, up-regulation of TGFbeta2 and TGFbetaRIII in HepG2 cells was found after exposure to styrene, while in human primary hepatocytes these genes were down-regulated after both treatments. Finally, it was found that styrene and SO treatments did not induce CYP1A2 and CYP2E1 protein expression. In conclusion, both compounds caused toxic stress in HepG2 cells, with SO being more toxic; in the meantime, a different effect of the two compounds in HepG2 cells and primary human hepatocytes was observed regarding their activity in gene modulation.
    Journal of Applied Toxicology 07/2006; 26(4):317-25. DOI:10.1002/jat.1142 · 3.17 Impact Factor