Cyclin D1 gene polymorphism is associated with an increased risk of urinary bladder cancer.

Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
Carcinogenesis (Impact Factor: 5.27). 03/2002; 23(2):257-64. DOI: 10.1093/carcin/23.2.257
Source: PubMed

ABSTRACT Cyclin D1 is believed to play an important role in the genesis and/or progression of transitional cell cancer (TCC) of the urinary bladder. Cyclin D1 gene (CCND1) mRNA is alternatively spliced to produce two transcripts, and the splicing pattern may be modulated by a G to A single nucleotide polymorphism within the splice donor site of exon 4. This study was conducted to explore the association between the polymorphism and the susceptibility to and disease status of TCC of the bladder in 222 cases and 317 native Japanese controls. The relationship between the CCND1 polymorphism and the mRNA splicing pattern in TCC cells was evaluated by semi-quantitative reverse-transcription PCR. The CCND1 A allele was more frequently observed in the TCC group than the control group (P = 0.032) with a significant difference in the genotype frequency between the two groups (P = 0.029). The AA genotype was associated with a significantly higher risk of TCC compared with the AG+GG genotypes (adjusted odds ratio (aOR) = 1.76, 95% confidence interval (CI) = 1.09-2.84, P = 0.022). This association was observed more significantly in nonsmoking cases (aOR = 2.53; 95% CI = 1.28-4.51, P = 0.008). Looking at tumor grade, the presence of the A allele was associated with higher grade (= grade 3) tumors with a gene dosage effect (aOR = 1.77, CI = 1.16-2.69, P = 0.008). In tumor stage, although not significant, the AA + AG genotypes tended to be more frequently observed in cases with T1-4 tumors than those with Ta tumors (aOR = 1.94, 95% CI = 0.98-3.82, P = 0.057). The genotype seemed to influence the two alternatively spliced forms of the CCND1 mRNA because the ratio of the CCND1 transcript-b/transcript-a was significantly higher in cases with the AA genotype compared with those with the AG + GG genotypes. These data suggest that the CCND1 variant A allele may be associated with an increased risk of TCC of the bladder, especially in men without a history of smoking, and it may also have an effect on its disease status.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relationship between DNA repair failure and cancer is well established as in the case of rare, high penetrant genes in high cancer risk families. Beside this, in the last two decades, several studies have investigated a possible association between low penetrant polymorphic variants in genes devoted to DNA repair pathways and risk for developing cancer. This relationship would be also supported by the observation that DNA repair processes may be modulated by sequence variants in DNA repair genes, leading to susceptibility to environmental carcinogens. In this framework, the aim of this review is to provide the reader with the state of the art on the association between common genetic variants and cancer risk, limiting the attention to single nucleotide polymorphisms (SNPs) of the NBN gene and providing the various odd ratios (ORs). In this respect, the NBN protein, together with MRE11 and RAD50, is part of the MRN complex which is a central player in the very early steps of sensing and processing of DNA double-strand breaks (DSBs), in telomere maintenance, in cell cycle control, and in genomic integrity in general. So far, many papers were devoted to ascertain possible association between common synonymous and non-synonymous NBN gene polymorphisms and increased cancer risk. However, the results still remain inconsistent and inconclusive also in meta-analysis studies for the most investigated E185Q NBN miscoding variant.
    Current Genomics 11/2013; 14(7):425-40. DOI:10.2174/13892029113146660012 · 2.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Perturbations in cell cycle and DNA repair genes might affect susceptibility to cancer. The aim of this meta-analysis is to generate large-scale evidence to determine the degree to which common Cyclin D1 (CCND1) G870A (dbSNP: rs603965) and xeroderma pigmentosum group C (XPC) Ala499Val (dbSNP: rs2228000) polymorphisms are associated with susceptibility to bladder cancer. The electronic databases PubMed, Embase, Web of Science, and CNKI were searched for relevant studies (with an upper date limit of July 25, 2013). The principal outcome measure for evaluating the strength of association was crude odds ratios (ORs) along with their corresponding confidence intervals (95 %CIs). We found and reviewed nine case-control studies on CCND1 G870A with a total of 6,823 subjects and seven studies on XPC Ala499Val with a total of 7,674 subjects. Our meta-analysis provides evidence that the variant genotype of CCND1 G870A showed a significant association in the occurrence of invasive bladder tumors in former and current smokers. The XPC Ala499Val polymorphism correlated with significant differences between patients and unaffected subjects, but when the groups were stratified by ethnicity, the magnitude of the overall effect was similar only among Caucasian populations. Results from our meta-analysis support the view that the G870A polymorphism may modulate the risk of bladder cancer in conjunction with tobacco smoking and that the Ala499Val polymorphism may contribute to the susceptibility to bladder cancer in Caucasian populations. Our findings, however, warrant larger well-designed studies to investigate the significance of these two polymorphisms as markers of susceptibility to bladder cancer.
    Tumor Biology 11/2013; DOI:10.1007/s13277-013-1412-9 · 2.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclin D1, encoded by the gene CCND1, is a regulatory protein in the cell cycle transition from G1 phase to S phase. A common polymorphism (G870A) in the exon 4 of CCND1 gene affects splicing of the CCND1 transcript and may cause uncontrollable cellular growth. Therefore, the CCND1 G870A polymorphism may influence an individual's susceptibility to the development of certain tumors. The present study was performed to test the association between G870A polymorphism in the CCND1 gene and hepatocellular carcinoma (HCC) risk in a Chinese population. We extracted the peripheral blood samples from 220 patients with HCC and 220 age- and gender-matched healthy controls. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis and direct DNA sequencing were performed to detect the polymorphism. The CCND1 genotype distribution among HCC patients was not significantly different from that among healthy controls (P = 0.08). Compared with the wild-type GG genotype, neither the variant AA genotype nor the variant genotypes containing the A allele were associated with risk of HCC. However, stratification analysis by HBV carrier status revealed that the variant genotypes containing the A allele were associated with a significantly increased risk of HCC among HBsAg-positive individuals (adjusted OR = 3.87; 95 % CI = 1.12, 13.30). These results suggest that the CCND1 G870A polymorphism may increase the risk of HBV-related HCC in the Chinese population.
    Tumor Biology 02/2014; 35(6). DOI:10.1007/s13277-014-1741-3 · 2.84 Impact Factor