Elevated Stratum Corneum Hydrolytic Activity in Netherton Syndrome Suggests an Inhibitory Regulation of Desquamation by SPINK5-Derived Peptides

Department of Dermatology, School of Medicine, Kanazawa University, Kanazawa, Japan.
Journal of Investigative Dermatology (Impact Factor: 6.37). 04/2002; 118(3):436-43. DOI: 10.1046/j.0022-202x.2001.01663.x
Source: PubMed

ABSTRACT Netherton syndrome is a congenital ichthyosis associated with erythroderma, hair shaft defects, and atopic features. The mutations of the secretory serine protease inhibitor Kazal-type 5 gene have been identified in Netherton syndrome patients; however, the actual physiologic substrates of the serine protease inhibitor Kazal-type 5 proprotein are unknown, and how the genetic defects cause characteristic skin phenotype remains uncertain. Here, we describe the serine protease inhibitor Kazal-type 5 gene mutations, including two novel non-sense mutations, and genotype-phenotype correlation in three Netherton syndrome patients in two unrelated Japanese families. Furthermore, based on the reappraisal of the structure of the serine protease inhibitor Kazal-type 5 proprotein, demonstration of the presence of carboxypeptidase in normal keratinocytes, and the observation of mRNA localization of the serine protease inhibitor Kazal-type 5 transcripts in the uppermost epidermis as well as pilosebaceous units, we propose a hypothetical model of proteolytic processing of the serine protease inhibitor Kazal-type 5 proprotein in the epidermis and inhibitory regulation of corneocyte desquamation by a set of serine protease inhibitor Kazal-type 5-derived peptides. This hypothesis is supported by the marked increase of trypsin-like hydrolytic activity demonstrated in stratum corneum samples from our Netherton syndrome patients. The findings in this study suggest that the defective inhibitory regulation of desquamation due to the serine protease inhibitor Kazal-type 5 gene mutations may cause over-desquamation of corneocytes in Netherton syndrome, leading to severe skin permeability barrier dysfunction.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SPINK9, a Kazal-type serine protease inhibitor, is almost exclusively expressed in the palmo-plantar epidermis. SPINK9 selectively inhibits kallikrein-related peptidase 5 (KLK5), no other target enzyme is known at present. In this study, we defined the reactive loop to residues 48 and 49 of SPINK9 and characterized the inhibition and binding of different SPINK9 variants towards KLK5, KLK7, KLK8 and KLK14. Substitutions of single amino acids in the reactive loop had a large impact on both inhibitory efficiency and specificity. Binding studies showed that it is mainly the dissociation rate that is affected by the amino acid substitutions. The inhibitory effect of wild-type SPINK9 was clearly pH-dependent with an improved effect at a pH similar to that of the outer layers of the skin. Modeling of the enzyme-inhibitor complexes showed that the reactive loop of SPINK9 fits very well into the deep negatively charged binding pocket of KLK5. A decrease in pH protonates His48 of the wild-type protein resulting in a positively charged residue, thereby explaining the observed decreased dissociation rate. Interestingly, substitution with a positively charged amino acid at position 48 resulted in a more efficient inhibitor at higher pH.
    Biological Chemistry 04/2012; 393(5):369-77. DOI:10.1515/hsz-2011-0238 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A previously unreported Kazal-type serine protease inhibitor, serine protease inhibitor Kazal type 9 (SPINK9), was identified in human skin. SPINK9 expression was strong in palmar epidermis, but not detectable or very low in non palmoplantar skin. Analysis of a human cDNA panel showed intermediate expression in thymus, pancreas, liver, and brain, and low or undetectable expression in other tissues. Using kallikrein-related peptidases (KLKs) 5, 7, 8, and 14, thrombin, trypsin, and chymotrypsin, inhibition with recombinant SPINK9 was seen only for KLK5 using low molecular weight substrates, with an apparent K(i) of 65 nM. Also KLK5 degradation of fibrinogen was totally inhibited by SPINK9. Slight inhibition of KLK8 using fibrinogen substrate could be observed using high concentrations of SPINK9. Analyses by surface plasmon resonance showed heterogeneous binding to SPINK9 of KLK5 and KLK8, but no binding of KLK7 or KLK14. KLK5 has been suggested to play a central role in skin desquamation as an initiating activating enzyme in proteolytic cascades formed by KLKs. An apparently KLK5-specific inhibitor, such as SPINK9, may play a significant regulatory role in such cascades. We suggest a possible role for SPINK9 in the site-specific epidermal differentiation of palms and soles.
    Journal of Investigative Dermatology 03/2009; 129(7):1656-65. DOI:10.1038/jid.2008.448 · 6.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human tissue kallikreins (KLKs) are the largest family of secreted serine protease endopeptidases encoded by 15 genes clustered on chromosome 19q13.4. Multiple KLK enzymes are co-localized in the upper stratum granulosum and stratum corneum of human epidermis, and in associated appendages such as hair follicle epithelia and sweat glands. Until recently, kallikrein proteolytic activity in the skin was exclusively attributed to KLK5 and KLK7. However, wider cutaneous roles of kallikreins became evident in recent years as the proposal of KLK proteolytic activation cascades emerged. We postulate that these proteolytic enzymes may serve as promiscuous mediators of different skin barrier functions, since they are capable of proteolysing different substrates that govern skin desquamation, antimicrobial defense, and lipid permeability. Growing evidence now attests to potential kallikrein involvement in skin inflammation, pigmentation, and tumor suppression via their ability to target proteinase-activated receptor signaling pathways. Current knowledge on kallikrein roles in skin physiology and pathobiology is described in this review.
    Biological Chemistry 06/2008; 389(6):669-80. DOI:10.1515/BC.2008.079 · 2.69 Impact Factor


Available from