Anantharam V, Kitazawa M, Wagner J, Kaul S, Kanthasamy AGCaspase-3-dependent proteolytic cleavage of protein kinase Cdelta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl. J Neurosci 22:1738-1751

Parkinson Disorders Research Program, Department of Biomedical Sciences, Iowa Sate University, Ames, Iowa 50011, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.34). 04/2002; 22(5):1738-51.
Source: PubMed


In the present study, we characterized oxidative stress-dependent cellular events in dopaminergic cells after exposure to an organic form of manganese compound, methylcyclopentadienyl manganese tricarbonyl (MMT). In pheochromocytoma cells, MMT exposure resulted in rapid increase in generation of reactive oxygen species (ROS) within 5--15 min, followed by release of mitochondrial cytochrome C into cytoplasm and subsequent activation of cysteine proteases, caspase-9 (twofold to threefold) and caspase-3 (15- to 25-fold), but not caspase-8, in a time- and dose-dependent manner. Interestingly, we also found that MMT exposure induces a time- and dose-dependent proteolytic cleavage of native protein kinase Cdelta (PKCdelta, 72-74 kDa) to yield 41 kDa catalytically active and 38 kDa regulatory fragments. Pretreatment with caspase inhibitors (Z-DEVD-FMK or Z-VAD-FMK) blocked MMT-induced proteolytic cleavage of PKCdelta, indicating that cleavage is mediated by caspase-3. Furthermore, inhibition of PKCdelta activity with a specific inhibitor, rottlerin, significantly inhibited caspase-3 activation in a dose-dependent manner along with a reduction in PKCdelta cleavage products, indicating a possible positive feedback activation of caspase-3 activity by PKCdelta. The presence of such a positive feedback loop was also confirmed by delivering the catalytically active PKCdelta fragment. Attenuation of ROS generation, caspase-3 activation, and PKCdelta activity before MMT treatment almost completely suppressed DNA fragmentation. Additionally, overexpression of catalytically inactive PKCdelta(K376R) (dominant-negative mutant) prevented MMT-induced apoptosis in immortalized mesencephalic dopaminergic cells. For the first time, these data demonstrate that caspase-3-dependent proteolytic activation of PKCdelta plays a key role in oxidative stress-mediated apoptosis in dopaminergic cells after exposure to an environmental neurotoxic agent.

10 Reads
  • Source
    • "The immortalized dopaminergic neuronal cell line obtained from rat mesencephalon, (1RB3AN27; referred to as N27 cells), which was described previously [22], [23], was a kind gift from Dr. Kedar N. Prasad (University of Colorado Health Sciences Center, Denver, CO). N27 cells were cultured in RPMI 1640 medium containing 10% fetal bovine serum, 2 mM l-glutamine, 50 units of penicillin, and 50 µg/ml streptomycin. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson's disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD.
    PLoS ONE 05/2014; 9(5):e96947. DOI:10.1371/journal.pone.0096947 · 3.23 Impact Factor
  • Source
    • "In addition, mhtt-induced cell death was partially blocked by the over-expression of a dominant negative form of PKCδ or by knockingdown endogenous PKCδ by using a siRNA thus supporting the idea that PKCδ plays a role in the regulation of striatal neuron death induced by mhtt. Similarly, a dominant negative form of PKCδ blocks for example phorbol ester-induced apoptosis in prostate cancer cells (Fujii et al., 2000) oxidative stress-mediated dopaminergic neuronal death (Anantharam et al., 2002) fatty acid-induced apoptosis of insulin secreting cells (Eitel et al., 2003) and acinus-induced apoptosis in PC12 cells (Hu et al., 2007) whereas down-regulation of PKCδ has been shown to be protective in different cell death paradigms (Zhong et al., 2002; Humphries et al., 2006 Shin et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: A balance between cell survival and apoptosis is crucial to avoid neurodegeneration. Here, we analyzed whether the pro-apoptotic protein PKCδ, and the pro-survival PKCα and βII, were dysregulated in the brain of R6/1 mouse model of Huntington's disease (HD). Protein levels of the three PKCs examined were reduced in all the brain regions analyzed being PKCδ the most affected isoform. Interestingly, PKCδ protein levels were also decreased in the striatum and cortex of R6/2 and Hdh(Q111/Q111) mice, and in the putamen of HD patients. Nuclear PKCδ induces apoptosis, but we detected reduced PKCδ in both cytoplasmic and nuclear enriched fractions from R6/1 mouse striatum, cortex and hippocampus. In addition, we show that phosphorylation and ubiquitination of PKCδ are increased in 30-week-old R6/1 mouse brain. All together these results suggest a pro-survival role of reduced PKCδ levels in response to mutant huntingtin-induced toxicity. In fact, we show that over-expression of PKCδ increases mutant huntingtin-induced cell death in vitro, whereas over-expression of a PKCδ dominant negative form or silencing of endogenous PKCδ partially blocks mutant huntingtin-induced cell death. Finally, we show that the analysis of lamin B protein levels could be a good marker of PKCδ activity, but it is not involved in PKCδ-mediated cell death in mutant huntingtin-expressing cells. In conclusion, our results suggest that neurons increase the degradation of PKCδ as a compensatory pro-survival mechanism in response to mutant huntingtin-induced toxicity that can help to understand why cell death appears late in the disease.
    Neuromolecular medicine 07/2013; 16(1). DOI:10.1007/s12017-013-8248-8 · 3.68 Impact Factor
  • Source
    • "Measurement of DNA fragmentation was performed using the Cell Death Detection ELISA PLUS Assay Kit [29]. The procedure was similar to the procedure described in our recent publication [30]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Methamphetamine- (MA-) induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. Our previous study demonstrated that MA induces autophagy in a dopaminergic neuronal cell model (N27 cells). The cellular mechanisms underlying MA-induced autophagy and apoptosis remain poorly characterized. In the present study we sought to investigate the importance of GSH redox status in MA-induced neurotoxicity using a thiol antioxidant, N-acetylcysteine (NAC). Morphological and biochemical analysis revealed that MA-induced autophagy in N27 dopaminergic cells was associated with pronounced depletion of GSH levels. Moreover, pretreatment with NAC reduced MA-induced GSH depletion and autophagy, while depletion of GSH using L-buthionine sulfoximine (L-BSO) enhanced autophagy. Furthermore, treatment with NAC significantly attenuated MA-induced apoptotic cell death as well as oxidative stress markers, namely, 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE). Together, these results suggest that NAC exhibits significant protective effects against MA-induced dopaminergic cell death, presumably via modulation of the GSH level and autophagy. Collectively, our data provide mechanistic insights into the role of cellular GSH redox status in MA-induced autophagy and apoptotic cell death, and additional studies are needed to determine the therapeutic effectiveness of cellular redox modifiers in attenuating dopaminergic neurodegeneration in vivo.
    09/2012; 2012(6):424285. DOI:10.1155/2012/424285
Show more


10 Reads
Available from