Rho GTPases in transformation and metastasis.

CRC Oncogene and Signal Transduction Group, University College London, UK.
Advances in Cancer Research (Impact Factor: 4.26). 02/2002; 84:57-80. DOI: 10.1016/S0065-230X(02)84003-9
Source: PubMed

ABSTRACT During the development and progression of human cancer, cells undergo numerous changes in morphology, proliferation, and transcriptional profile. Over the past couple of decades there have been intense efforts to understand the molecular mechanisms involved, and members of the Ras superfamily of small GTPases have emerged as important players. Mutated versions of the Ras genes were first identified in human cancers some 20 years ago, but more recently, the Rho branch of the family has been receiving increased attention. In addition to the experimental evidence implicating Rho GTPase signaling in promoting malignant transformation, genetic analysis of human cancers has now revealed a few examples of direct alterations in the genes encoding regulators of Rho GTPases. In this review, we discuss the evidence implicating Rho GTPases in transformation and metastasis, as well as the progress made toward identifying their biochemical mechanism of action.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the identification of Nm23 (NME1, NME/NM23 nucleoside diphosphate kinase 1) as the first non-metastatic protein, a great deal of research on members of the NME family of proteins has focused on roles in processes implicated in carcinogenesis and particularly their regulation of cellular motility and the process of metastatic spread. To date, there are ten identified members of this family of genes, and these can be dichotomized into groups both taxonomically and by the presence or absence of their nucleoside diphosphate kinase activity with NMEs 1-4 encoding nucleoside diphosphate kinases (NDPKs) and NMEs 5-9 plus RP2 displaying little if any NDPK activity. NMEs are relatively small proteins that can form hetero-oligomers (typically hexamers), and given the apparent genetic redundancy of some NMEs and the number of different isoforms, it is perhaps not surprising that there remains a great deal of uncertainty regarding their function and even more regarding cellular mechanisms of action. Since residues that contribute to NDPK activity span much of the protein, it seems likely that the consequences of NME expression must be mediated through their NDPK activity, through interactions with other structures in cells including protein-protein interactions or through combinations of these. Our goal in this review is to focus on some of the protein-protein interactions that have been identified and to highlight some of the challenges that face this area of research.
    Archiv für Experimentelle Pathologie und Pharmakologie 11/2014; 388(2). DOI:10.1007/s00210-014-1062-5 · 2.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The anticancer efficacy of anthracyclines is limited by cumulative dose-dependent early and delayed cardiotoxicity resulting in congestive heart failure. Mechanisms responsible for anthracycline-induced heart damage are controversially discussed and effective preventive measures are preferable. Here, we analyzed the influence of the lipid lowering drug lovastatin on anthracycline-induced late cardiotoxicity as analyzed three month after treatment of C57BL/6 mice with five low doses of doxorubicin (5 × 3 mg/kg BW; i.p.). Doxorubicin increased the cardiac mRNA levels of BNP, IL-6 and CTGF, while the expression of ANP remained unchanged. Lovastatin counteracted these persisting cardiac stress responses evoked by the anthracycline. Doxorubicin-induced fibrotic alterations were neither detected by histochemical collagen staining of heart sections nor by analysis of the mRNA expression of collagens. Extensive qRT-PCR-array based analyses revealed a large increase in the mRNA level of heat shock protein Hspa1b in doxorubicin-treated mice, which was mitigated by lovastatin co-treatment. Electron microscopy together with qPCR-based analysis of mitochondrial DNA content indicate that lovastatin attenuates doxorubicin-stimulated hyperproliferation of mitochondria. This was not paralleled by increased expression of oxidative stress responsive genes or senescence-associated proteins. Echocardiographic analyses disclosed that lovastatin protects from the doxorubicin-induced decrease in the left ventricular posterior wall diameter (LVPWD), while constrictions in fractional shortening (FS) and ejection fraction (EF) evoked by doxorubicin were not amended by the statin. Taken together, the data suggest beneficial effects of lovastatin against doxorubicin-induced delayed cardiotoxicity. Clinical studies are preferable to scrutinize the usefulness of statins for the prevention of anthracycline-induced late cardiotoxicity.
    Pharmacological Research 11/2014; 91. DOI:10.1016/j.phrs.2014.11.003 · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously reported that nonmuscle myosin II-interacting guanine nucleotide exchange factor (MyoGEF) plays an important role in the regulation of cell migration and cytokinesis. Like many other guanine nucleotide exchange factors (GEFs), MyoGEF contains a Dbl-homology (DH) domain and a pleckstrin homology (PH) domain. In this study we provide evidence demonstrating that intramolecular interactions between the DH domain (residues 162-351) and the carboxyl-terminal region (501-790) of MyoGEF can inhibit MyoGEF functions. In vitro and in vivo pull-down assays showed that the carboxyl-terminal region (residues 501-790) of MyoGEF could interact with the DH domain, but not with the PH domain. Expression of a MyoGEF carboxyl-terminal fragment (residues 501-790) decreased RhoA activation and suppressed actin filament formation in MDA-MB-231 breast cancer cells. Additionally, Matrigel invasion assays showed that exogenous expression of the MyoGEF carboxyl-terminal region decreased the invasion activity of MDA-MB-231 cells. Moreover, co-immunoprecipitation assays showed that phosphorylation of the MyoGEF carboxyl-terminal region by aurora B kinase interfered with the intramolecular interactions of MyoGEF. Furthermore, expression of the MyoGEF carboxyl-terminal region interfered with RhoA localization during cytokinesis and led to an increase in multinucleation. Together, our findings suggest that binding of the carboxyl-terminal region of MyoGEF to its DH domain acts as an autoinhibitory mechanism for the regulation of MyoGEF activation.
    Journal of Biological Chemistry 10/2014; 289(49). DOI:10.1074/jbc.M114.607267 · 4.60 Impact Factor