Rho GTPases in transformation and metastasis.

CRC Oncogene and Signal Transduction Group, University College London, UK.
Advances in Cancer Research (Impact Factor: 4.26). 02/2002; 84:57-80. DOI: 10.1016/S0065-230X(02)84003-9
Source: PubMed

ABSTRACT During the development and progression of human cancer, cells undergo numerous changes in morphology, proliferation, and transcriptional profile. Over the past couple of decades there have been intense efforts to understand the molecular mechanisms involved, and members of the Ras superfamily of small GTPases have emerged as important players. Mutated versions of the Ras genes were first identified in human cancers some 20 years ago, but more recently, the Rho branch of the family has been receiving increased attention. In addition to the experimental evidence implicating Rho GTPase signaling in promoting malignant transformation, genetic analysis of human cancers has now revealed a few examples of direct alterations in the genes encoding regulators of Rho GTPases. In this review, we discuss the evidence implicating Rho GTPases in transformation and metastasis, as well as the progress made toward identifying their biochemical mechanism of action.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lung adenocarcinoma (ADC) is the most common lung cancer subtype and presents a high mortality rate. Clinical recurrence is often associated with the emergence of metastasis and treatment resistance. The purpose of this study was to identify genes with high prometastatic activity which could potentially account for treatment resistance. Global transcriptomic profiling was performed by robust microarray analysis in highly metastatic subpopulations. Extensive in vitro and in vivo functional studies were achieved by overexpression and by silencing gene expression. We identified the small GTPase RHOB as a gene that promotes early and late stages of metastasis in ADC. Gene silencing of RHOB prevented metastatic activity in a systemic murine model of bone metastasis. These effects were highly dependent on tumor-host interactions. Clinical analysis revealed a marked association between high RHOB levels and poor survival. Consistently, high RHOB levels promote metastasis progression, taxane-chemoresistance, and contribute to the survival advantage to γ-irradiation. We postulate that RHOB belongs to a novel class of "genes of recurrence" that have a dual role in metastasis and treatment resistance.
    Molecular oncology 11/2013; 8(2). DOI:10.1016/j.molonc.2013.11.001 · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The epithelial-to-mesenchymal transition (EMT) is a program of cellular development associated with loss of cell-cell contacts, a decreased cell adhesion and substantial morphological changes. Besides its importance for numerous developmental processes, EMT has also been held responsible for the development and progression of tumors and formation of metastases. The influence of the cytokine transforming growth factor β1 (TGF-β1) induced EMT on structure, migration, cytoskeletal dynamics and long-term correlations of the mammalian epithelial cell lines NMuMG, A549 and MDA-MB231 was investigated with time-resolved impedance analysis. The three cell lines show important differences in concentration dependency, cellular morphology and dynamics upon their response to TGF-β1. A549 cells and the non-tumor mouse epithelial cell line NMuMG show a substantial change in morphology mirrored in stepwise changes of their phenotype upon cytokine treatment. Impedance based measurements of micromotility reveal a complex dynamic response to TGF-β1 exposure which leads to a transient increase in fluctuation amplitude and long-term correlation. These changes in fluctuation amplitude are also detectable for MDA-MB231 cells, whereas the long-term correlation remains unvaried. We were able to distinguish three time domains during EMT. Initially, all cell lines display an increase in micromotion lasting 4 to 9h termed transitional state I. This regime is followed by transitional state II lasting approximately 20 h, where cellular dynamics are diminished and, in case of the NMuMG cell line, a loss of cell-cell contacts occurs. Finally, the transformation into the mesenchymal-like phenotype occurs 24-30 h after exposure to TGF-β1.
    Biochimica et Biophysica Acta 07/2011; 1813(12):2099-107. DOI:10.1016/j.bbamcr.2011.07.016 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RhoU is an atypical Rho family member with high homology to CDC42 but containing unique N- and C-terminal extensions. The mechanisms regulating RhoU activation, as well as its downstream effectors, are not fully characterized. We show that after epidermal growth factor (EGF) stimulation RhoU colocalizes with EGF receptor (EGFR) on endosomes, which requires both its N- and C-terminal extension sequences. Moreover, RhoU physically associates with activated EGFR in a GRB2-dependent manner through specific proline-rich motifs within its N-terminus. Mutation of these proline-rich sequences or suppression of GRB2 by RNA interference abrogates the interaction of RhoU with activated EGFR, as well as EGF-stimulated RhoU GTP binding. In addition, RhoU is involved in EGFR-mediated signaling, leading to AP1 transcriptional activity and cell migration in pancreatic cancer cells, events that require its interaction with the Grb2-EGFR complex. Taken together, the data suggest a unique regulatory mechanism by which RhoU interaction with SH3 adaptor proteins might serve to integrate growth factor receptor signaling with RhoU activation.
    Molecular biology of the cell 06/2011; 22(12):2119-30. DOI:10.1091/mbc.E10-12-0969 · 5.98 Impact Factor