Article

Performance of three preoperative risk indices; CABDEAL, EuroSCORE and Cleveland models in a prospective coronary bypass database

Department of Anaesthesia and Intensive Care Medicine, HUCH, Meilahti Hospital, FIN-00029 HUS, Helsinki, Finland.
European Journal of Cardio-Thoracic Surgery (Impact Factor: 2.81). 04/2002; 21(3):406-10. DOI: 10.1016/S1010-7940(02)00007-6
Source: PubMed

ABSTRACT The aim of the present study was to evaluate the performance of three different preoperative risk models in the prediction of postoperative morbidity and mortality in coronary artery bypass (CAB) surgery.
Data on 1132 consecutive CAB patients were prospectively collected, including preoperative risk factors and postoperative morbidity and in-hospital mortality. The preoperative risk models CABDEAL, EuroSCORE and Cleveland model were used to predict morbidity and mortality. A C statistic (receiver operating characteristic (ROC) curve) was used to test the discrimination of these models.
The area under the ROC curve for morbidity was 0.772 for the CABDEAL, 0.694 for the EuroSCORE and 0.686 for the Cleveland model. Major morbidity due to postoperative complications occurred in 268 patients (23.6%). The mortality rate was 3.4% (n=38 patients). The ROC curve areas for prediction of mortality were 0.711 for the CABDEAL, 0.826 for the EuroSCORE and 0.858 for the Cleveland model.
The CABDEAL model was initially developed for the prediction of major morbidity. Thus, it is not surprising that this model evinced the highest predictive value for increased morbidity in this database. Both the Cleveland and the EuroSCORE models were better predictive of mortality. These results have implications for the selection of risk indices for different purposes. The simple additive CABDEAL model can be used as a hand-held model for preoperative estimation of patients' risk of postoperative morbidity, while the EuroSCORE and Cleveland models are to be preferred for the prediction of mortality in a large patient sample.

Download full-text

Full-text

Available from: Tuula S Kurki, Jul 04, 2015
0 Followers
 · 
64 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Study's purpose: Plasma levels of soluble receptor for advanced glycation endproducts (sRAGE) and S100A12 are increased in young children after cardiac surgery and correlate with the time spent on cardiopulmonary bypass (CPB). This study was performed to investigate whether plasma levels of sRAGE and S100A12 are affected by the use of CPB. Levels of S100A12 and sRAGE, along with of interleukin-6, tumor necrosis factor-α, myeloperoxidase, and C-reactive protein were measured in 25 adults undergoing non-urgent coronary artery bypass grafting with and without the use of CPB. Significant finding: Plasma levels of S100A12, sRAGE, IL-6, TNF-α and MPO 4h after cardiac surgery were elevated compared to baseline; this increase was equally observed in patients undergoing traditional coronary artery bypass grafting on cardiopulmonary bypass (n = 16), and in patients undergoing robot-assisted coronary artery bypass grafting off pump (OPCAB, n = 9). Patients with prolonged hospitalization of 7 days or longer had significantly higher S100A12 and sRAGE 4 hours post surgery compared to patients hospitalized ≤ 6 days. Increased sRAGE and S100A12 after cardiac surgery is associated with prolonged length of hospitalization in patients after coronary artery bypass grafting; however, we did not observe an intrinsic effect of cardiopulmonary bypass on S100A12 or sRAGE plasma levels in our small pilot study. Further studies are required to confirm the value of sRAGE and S100A12 in predicting postoperative complications after cardiac surgery in a larger study.
    01/2013; 3(2):85-90.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the performance of EuroSCORE in the prediction of in-hospital postoperative length of stay and specific major postoperative complications after cardiac surgery. Data on 5051 consecutive patients (isolated [74.4%] or combined coronary artery bypass grafting [11.1%], valve surgery [12.0%] and thoracic aortic surgery [2.5%]) were prospectively collected. The EuroSCORE model (standard and logistic) was used to predict in-hospital mortality, 3-month mortality, prolonged length of stay (>12 days) and major postoperative complications (intraoperative stroke, stroke over 24 h, postoperative myocardial infarction, deep sternal wound infection, re-exploration for bleeding, sepsis and/or endocarditis, gastrointestinal complications, postoperative renal failure and respiratory failure). A C statistic (or the area under the receiver operating characteristic curve) was used to test the discrimination of the EuroSCORE. The calibration of the model was assessed by the Hosmer-Lemeshow goodness-of-fit statistic. In-hospital mortality was 3.9% and 16.1% of patients had one or more major complications. Standard EuroSCORE showed very good discriminatory ability and good calibration in predicting in-hospital mortality (C statistic: 0.76, Hosmer-Lemeshow: P=0.449) and postoperative renal failure (C statistic: 0.79, Hosmer-Lemeshow: P=0.089) and good discriminatory ability in predicting sepsis and/or endocarditis (C statistic: 0.74, Hosmer-Lemeshow: P=0.653), 3-month mortality (C statistic: 0.73, Hosmer-Lemeshow: P=0.097), prolonged length of stay (C statistic: 0.71, Hosmer-Lemeshow: P=0.051) and respiratory failure (C statistic: 0.71, Hosmer-Lemeshow: P=0.714). There were no differences in terms of the discriminatory ability in predicting these outcomes between standard and logistic EuroSCORE. However, logistic EuroSCORE showed no calibration (Hosmer-Lemeshow: P<0.05) except for sepsis and/or endocarditis (Hosmer-Lemeshow: P=0.078). EuroSCORE was unable to predict other major complications such as intraoperative stroke, stroke over 24 h, postoperative myocardial infarction, deep sternal wound infection, gastrointestinal complications and re-exploration for bleeding. EuroSCORE can be used to predict not only in-hospital mortality, for which it was originally designed, but also 3-month mortality, prolonged length of stay and specific postoperative complications such as renal failure, sepsis and/or endocarditis and respiratory failure in the whole context of cardiac surgery. These outcomes can be predicted accurately using the standard EuroSCORE which is very simple and easy in its calculation.
    European Journal of Cardio-Thoracic Surgery 01/2005; 27(1):128-33. DOI:10.1016/j.ejcts.2004.09.020 · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ziel: Risikoklassifikationen in der Herz- und Gefäßchirurgie sind bei der Qualitätskontrolle, bei der Begleitung von klinischen Studien, bei Kosten-Nutzen-Analysen, aber auch als orientierende Hilfe bei der Indikationsstellung für den einzelnen Patienten von unbestreitbarem Nutzen. In unserer Studie wurden sechs gängige Risikoklassifikationen auf ihre Validität und Anwendbarkeit in unserer Patientenpopulation hin getestet. Die in den Risikoklassifikationen verwendeten Risikofaktoren wurden auf ihren erklärenden Beitrag zu der postoperativen 30-Tages-Mortalität und Morbidität in unserer Patientenpopulation hin überprüft, mit dem Ziel, die aussagekräftigsten "Kern-Risikofaktoren" herauszufiltern. Material und Methodik: Im Rahmen dieser retrospektiven Studie wurden 956 Patienten mit einer koronaren Herzerkrankung, die sich im Zeitraum von Januar 1999 bis Mai 2000 einer aortokoronaren Bypassoperation (ACB-OP) unterzogen hatten, hinsichtlich ihres Operationsrisikos durch den Parsonnet Score, den EURO Score, den Ontario Province Risk (OPR) Score, den French Score, den Pons Score und den Cleveland Clinic Score klassifiziert. Als postoperatives "outcome" betrachteten wir die Mortalität und Morbidität innerhalb der ersten 30 Tage. Receiver Operating Characteristics (ROC) Kurven wurden bestimmt, um die Risikoklassifikationen auf ihre Validität zu untersuchen und miteinander zu vergleichen. Um die aussagekräftigsten "Kern-Risikofaktoren" zu bestimmen, wurden in einer univariaten Analyse die relativen Risiken der einzelnen Risikofaktoren ermittelt und in einer multivariaten Analyse die in Frage kommenden Faktoren mittels logistischer Regression in einem Step-Down-Verfahren getestet. Ergebnisse: Bei der ROC-Kurven Analyse zeigten sich für alle Risikoklassifikationen vergleichbare Werte ohne signifikante Unterschiede (Mortalität: Parsonnet 0,802; EURO 0,815; OPR Score 0,796; French Score 0,770; Pons Score 0,847; Cleveland Clinic Score 0,805) (Morbidität: Parsonnet 0,696; EURO 0,706; OPR Score 0,693; French Score 0,682; Pons Score 0,692; Cleveland Clinic Score 0,693). In der klinischen Praxis erscheint der OPR Score mit nur sechs Risikofaktoren am einfachsten zu erheben zu sein. Die in der multivariaten Analyse aussagekräftigsten Kern-Risikofaktoren für die postoperative Mortalität waren ein Kreatinin-Wert im Serum ab 1,5 mg/dl, Diabetes mellitus, Herzinsuffizienz NYHA Grad 3 oder 4, Re-Operation, schlechter präoperativer Status des Patienten und eine ACB-OP kombiniert mit einer Herzklappen-OP. Ein höheres Patientenalter zeigte zwar in der univariaten Risikofaktoranalyse auch höhere relative Risiken, bei dermultivariaten Analyse war das Alter als Risikofaktor jedoch nicht relevant. Eine symptomatische Herzinsuffizienz war multivariat betrachtet aussagekräftig. Wurde stattdessen jedoch nur eine eingeschränkte linksventrikuläre Ejektionsfraktion (LVEF) betrachtet, ergaben sich keine Relevanzen. Als Kern-Risikofaktoren für die postoperative Morbidität ergaben sich ein Kreatinin-Wert im Serum ab 1,5 mg/dl, eine chronisch obstruktive Lungenerkrankung (COPD), eine Herzinsuffizienz NYHA Grad 3 oder 4, eine Re-Operation, ein schlechter präoperativer Status des Patienten und eine ACB-OP kombiniert mit einer Herzklappen-OP. Ein höheres Patientenalter zeigte in der multivariaten Betrachtung ebenfalls Relevanz als Risikofaktor, nicht jedoch eine eingeschränkte LVEF an Stelle der symptomatischen Herzinsuffizienz. Schlussfolgerungen: Alle untersuchten Risikoklassifikationen zeigen eine ausreichend hohe Validität hinsichtlich der postoperativen Mortalität, nicht jedoch bezüglich der postoperativen Morbidität. Bei statistisch nicht signifikanten Unterschieden in der Diskriminanz der einzelnen Risikoklassifikationen scheint der OPR Score vom klinischen Standpunkt her gesehen mit nur sechs zu erhebenden Risikofaktoren am praktikabelsten zu sein. Bezüglich der Analyse von einzelnen Risikofaktoren lässt sich feststellen, dass eine Herzinsuffizienz als Risikofaktor erst bei einer symptomatischen Einschränkung der Leistungsfähigkeit des Patienten an Bedeutung gewinnt. Das "biologische Alter" eines Patienten wird durch die Kombination mehrerer Risikofaktoren hinreichend gut abgebildet, so dass das chronologische Alter des Patienten in einer multivariaten Analyse an Bedeutung verliert. Objective: Risk classifications in cardio-thoracic surgery are important tools in quality control, in clinical studies and in cost-benefit analyses. In addition, they can be helpful for the indication of the individual patient. In our study we compared six commonly used risk scores with regard to their validity and practicability in our patient population. Furthermore, the single risk factors used in the risk scores were tested for their correlation with 30-day mortality and morbidity in our patient population with the objective of detecting the most significant “core risk factors”. Methods: 956 patients with coronary heart disease, who in the period of January 1999 until March 2000 had undergone coronary artery bypass grafting (CABG), were included in our retrospective study. They were scored regarding their operation risk using the Parsonnet Score, the EURO Score, the Ontario Province Risk (OPR) Score, the French Score, the Pons Score and the Cleveland Clinic Score. As postoperative outcome we investigated the mortality and morbidity measurements within the first 30 days. Receiver operating Characteristics (ROC) curves were determined to compare the different risk scores for their validity. In order to determine the most important “core risk factors”, the relative risks of the individual risk factors were established in an univariate analysis. Finally, the possibly applicable risk factors were tested using a logistic regression model in a step down procedure. Results: Receiver operating characteristics (ROC) curve analysis showed comparable values for all risk classifications (mortality: Parsonnet 0,802; EURO 0,815; OPR Score 0,796; French Score 0,770; Pons Score 0,847; Cleveland Clinic Score 0.805) (morbidity: Parsonnet 0,696; EURO 0,706; OPR Score 0,693; French Score 0,682; Pons Score 0,692; Cleveland Clinic Score 0.693). In clinical practice the OPR Score with only six risk factors appears to be the most simple one. In the multivariate analysis the most important risk factors for the postoperative mortality were a Serum-Creatinine starting from 1,5 mg/dl, diabetes mellitus, heart failure class 3 or 4, a re-operation, a poor preoperative condition of the patient and a CABG combined with valve surgery. Although an elevated patient age also showed a higher relative risk in the univariate analysis of risk factors, it was not a relevant risk factor in the multivariate analysis. Symptomatic heart failure was significant in the multivariate analysis, but a reduced leftventricular ejectionfraction (LVEF) by itself was not a significant risk factor. As “core risk factors” for the postoperative morbidity resulted a Serum-Creatinine starting from 1,5 mg/dl, chronically obstructive lung disease (COPD), heart failure 3 or 4, a re-operation, a poor preoperative condition of the patient and CABG combined with valve surgery. An elevated patient age showed relevance as a risk factor in a multivariate analysis. Again a reduced LVEF in place of clinical heart failure classifications did not show relevance in the multivariate analysis. Conclusions: All examined risk scores show sufficiently high validity regarding the postoperative mortality, but not regarding the postoperative morbidity. Statistically there are no significant differences between the single risk scores. However, the OPR Score with only six risk factors seems to be the most practicable from the clinical point of view. Concerning the analysis of individual risk factors, it should be noted, that in patients with heart failure only clinical classification, but not LVEF was a relevant risk factor. The “biological age” of a patient is sufficiently well described by the combination of several risk factors, so that the chronological age of the patient becomes less important in a multivariate analysis.