Hyperploidy induced by drugs that inhibit formation of microtubule promotes chromosome instability.

Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
Genes to Cells (Impact Factor: 2.73). 03/2002; 7(2):151-62. DOI: 10.1046/j.1356-9597.2001.00509.x
Source: PubMed

ABSTRACT Antimicrotubule drugs (AMDs), such as taxol and vincristine, are the most important addition to the chemotherapeutic armamentarium against human cancers. It has been shown that prolonged AMD treatment induces hyperploidy in G1-checkpoint-defective cancer cells and that these hyperploid cells subsequently undergo apoptosis. However, a fraction of these hyperploid cells are able to survive the prolonged mitotic stress and resume cell-cycle progression.
We established hyperploid clones that escaped from cell death after AMD treatment from two glioma cell lines, U251MG and U87MG. Subtractive comparative genomic hybridization (CGH) analysis revealed that clones derived from U87MG mainly had chromosome number changes, but that those from U251MG showed both numerical and structural chromosomal changes. Furthermore, numerous aberrations identified in U251MG clones were remarkably chromosome-specific, which may have been due to clonal selection for cells that have an advantage in growth and/or survival. All clones derived from both cell lines had abnormalities in chromosome segregation, and karyotypes of clones were more heterogeneous than those of parental cells, suggesting that cells having a higher chromosome number are subject to asymmetric chromosome segregation, resulting in a heterogeneous karyotype. All clones derived from U87MG and U251MG increased both centric and acentromeric micronuclei, suggesting the presence of chromosome structural abnormality.
AMD treatment induces hyperploid formation and chromosome instability in checkpoint-deficient cancer cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Pseudolaric acid B (PAB) is the primary biologically active compound isolated from the root bark of P. kaempferi Gordon. Previous studies have demonstrated that PAB arrests cells in G2/M phase in several cancer cell lines without significantly perturbing the G2/M transition-associated proteins. CylinB1, a marker for mitotic phase arrest, was up-regulated in cells treated with PAB. Therefore, we investigated whether PAB affects cell cycle progression at the mitotic phase. The mitotic index increased during a 24h treatment with PAB, suggesting that PAB arrested cell cycle progression at mitosis. In addition, after a prolonged mitotic arrest, the cells underwent mitotic catastrophe. After an extended treatment with PAB (longer than 24h), the protein levels of cylinB1 and cdc2 significantly decreased in both nuclear and cytosolic extracts. According to these results, we concluded that mitotic slippage could be due to the inactivation of the cylinB1-cdc2 complex resulting from prolonged treatment with PAB. The cells undergoing mitotic catastrophe died via apoptosis.
    European journal of pharmacology 03/2012; 683(1-3):16-26. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma is characterised by invasive growth and a high degree of radioresistance. Survivin, a regulator of chromosome segregation, is highly expressed and known to induce radioresistance in human gliomas. In this study, we examined the effect of survivin suppression on radiosensitivity in malignant glioma cells, while focusing on centrosome aberration and chromosome instability (CIN). We suppressed survivin by small interfering RNA transfection, and examined the radiosensitivity using a clonogenic assay and a trypan blue exclusion assay in U251MG (p53 mutant) and D54MG (p53 wild type) cells. To assess the CIN status, we determined the number of centrosomes using an immunofluorescence analysis, and the centromeric copy number by fluorescence in situ hybridisation. As a result, the radiosensitisation differed regarding the p53 status as U251MG cells quickly developed extreme centrosome amplification (=CIN) and enhanced the radiosensitivity, while centrosome amplification and radiosensitivity increased more gradually in D54MG cells. TUNEL assay showed that survivin inhibition did not lead to apoptosis after irradiation. This cell death was accompanied by an increased degree of aneuploidy, suggesting mitotic cell death. Therefore, survivin inhibition may be an attractive therapeutic target to overcome the radioresistance while, in addition, proper attention to CIN (centrosome number) is considered important for improving radiosensitivity in human glioma.
    British Journal of Cancer 02/2008; 98(2):345-55. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant glioma (MG) is highly proliferative and invasive, with the malignant characteristics associated with aneuploidy and chromosomal instability (CIN). Here, we found that the level of germinal center-associated nuclear protein (GANP), a mammalian homologue of yeast Sac3, was markedly decreased in MGs with a poor prognosis; and thus we explored the effect of its decrease on cell-cycle progression of MG cell lines. Glioblastomas showed a significantly lower level of ganp mRNA than anaplastic astrocytomas, as measured by real-time reverse transcription-PCR, in 101 cases of adult MG. MGs of ganp(Low) expression displayed more malignant characteristics, with loss of heterozygosity on chromosome 10, epidermal growth factor receptor gene amplification, and significantly poorer prognosis than the ganp(High) group. Human diploid fibroblasts depleted of ganp mRNA by the RNA interference (RNAi) method showed a decreased percentage of S-phase cells and a cellular-senescence phenotype. MG cell lines harboring abnormalities of various cell-cycle checkpoint molecules displayed slippage of mitotic checkpoints and an increased proportion of hyperploid cells after ganp RNAi-treatment. These results suggest that GANP protects cells from cellular senescence caused by DNA damage and that a significant decrease in GANP expression leads to malignancy by generating hyperploidy and CIN.
    Cancer Science 08/2009; 100(11):2069-76. · 3.48 Impact Factor